

# Calculus Integration

### By

Norhafizah Md Sarif & Norazaliza Mohd Jamil Faculty of Industrial Science & Technology norhafizah@ump.edu.my, norazaliza@ump.edu.m



Calculus by Norhafizah Md Sarif http://ocw.ump.edu.my/course/view.php?id=452

Communitising Technology

## Description

#### <u>Aims</u>

This chapter is aimed to :

- 1. introduce the concept of integration
- 2. explain the basic properties of integral
- 3. compute the integral using different techniques of integration

### Expected Outcomes

- 1. Students should be able to explain about indefinite integral and definite integral
- 2. Students should be able to know the basic properties of definite integrals
- 3. Student should be able to determine the appropriate techniques to solve difficult integral.

#### **References**

 Abdul Wahid Md Raji, Hamisan Rahmat, Ismail Kamis, Mohd Nor Mohamad, Ong Chee Tiong. *The First Course of Calculus for Science & Engineering Students*, Second Edition, UTM 2016.



## Content



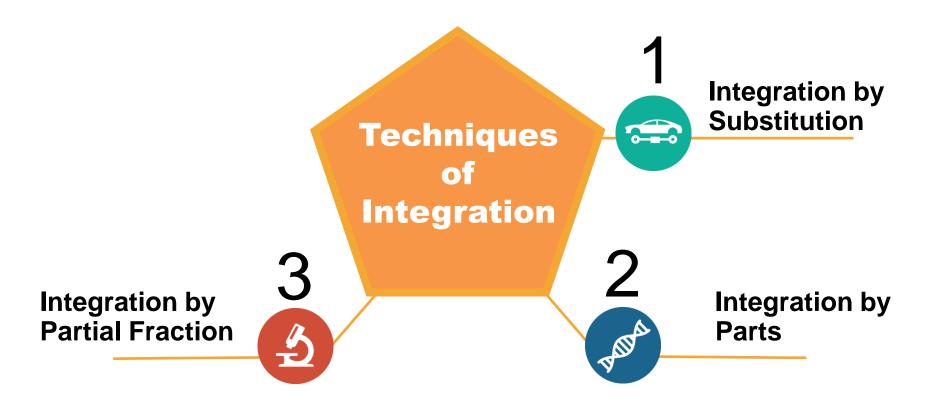
### Integration by Substitution

- 2
- Integration by Parts
- 3
- Integration using Partial Fractions











Calculus by Norhafizah Md Sarif http://ocw.ump.edu.my/course/view.php?id=452

Communitising Technology

## Integration by Substitution

The idea of integration by substitution is to transform a difficult integral to an simpler integral by using a substitution.

Theorem – Integration by substitution. Let f,

g and u be differentiable functions of x such that

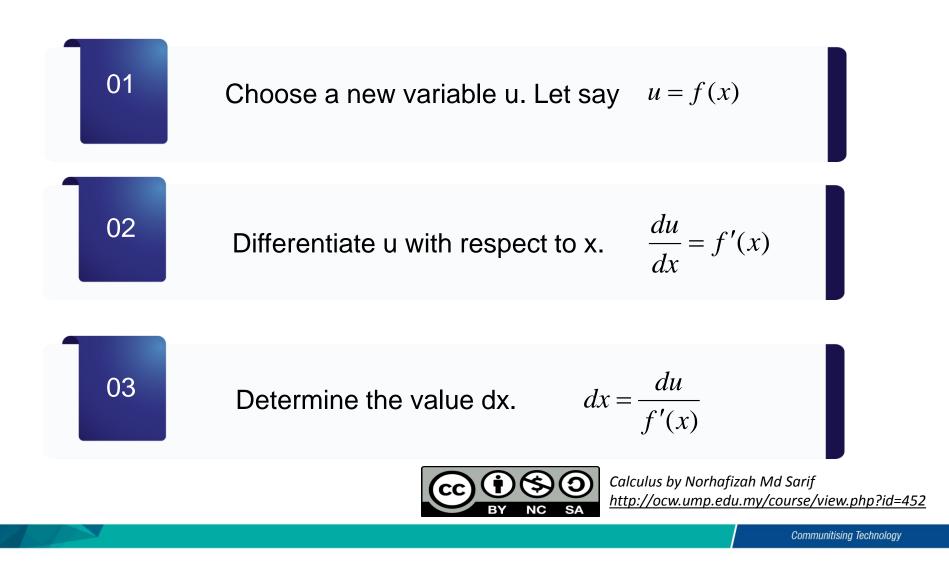
$$f(x) = g(u)\frac{du}{dx}$$

Then

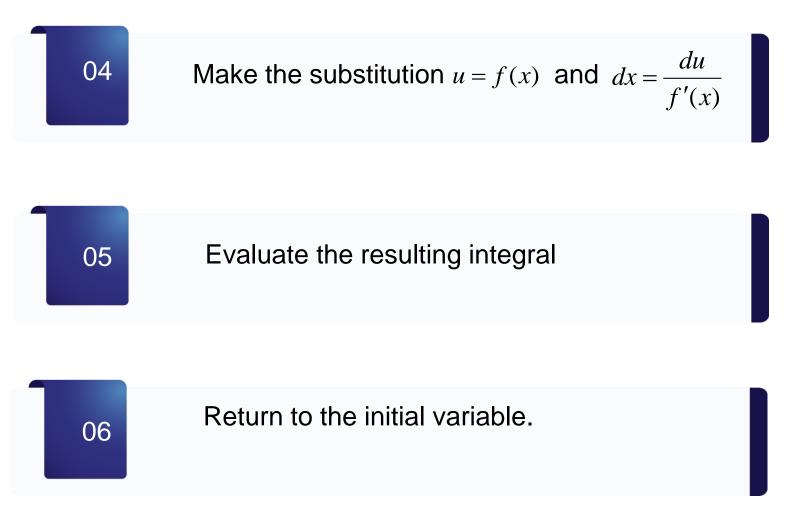
$$\int f(x)dx = \int g(u)\frac{du}{dx}dx = \int g(u)du = G(u) + c$$



### Integration by Substitution – Working Steps











**Example**  
Evaluate 
$$\int (5x+3)^7 dx$$

Step 1 : Choose a substitution function u

Step 2: Differentiate u with respect to x  $dx = \frac{du}{5}$ Step 3: From step 2, dx

Step 4: Substitute u and dx into integral

Step 5 : Evaluate the resulting integral

Step 6 : Return to variable x

 $\implies \int (5x+3)^7 \, dx = \int u^7 \, \frac{du}{5}$  $\int \frac{1}{5} u^7 du = \frac{1}{40} u^8 + c$ 

 $\frac{1}{40}u^8 + c = \frac{1}{40}(5x+3)^8 + c$ 

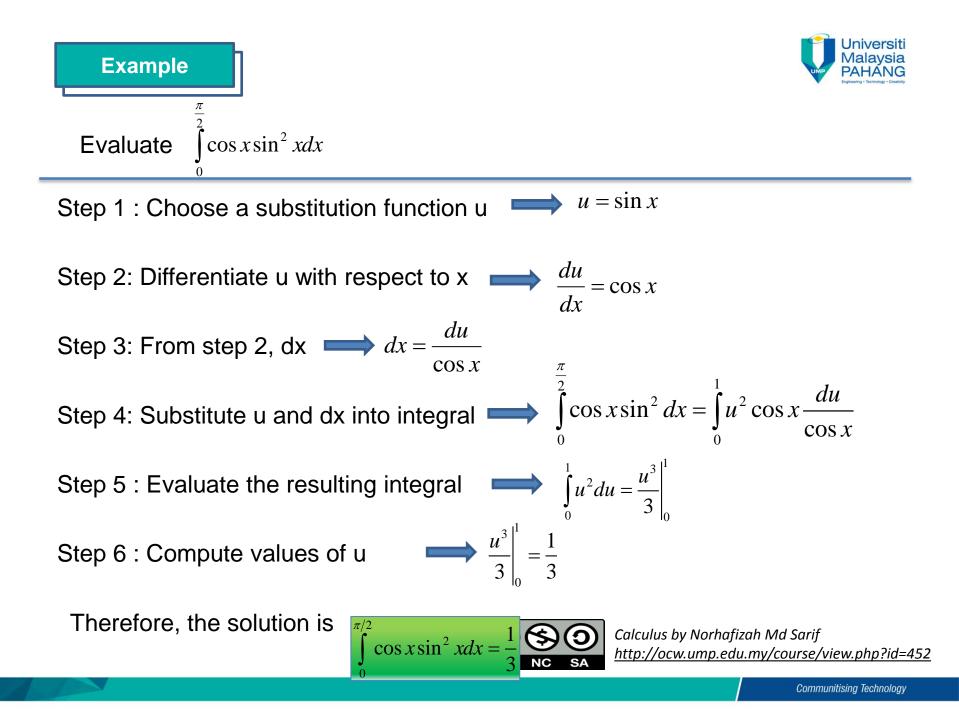
 $4\frac{du}{dx} = 5$ 

u = 5x + 3

Therefore, the solution is

$$\int (5x+3)^7 \, dx = \frac{1}{40} (5x+3)^8 + dx$$







### Example

Evaluate 
$$\int (3x^2+1)^{30} \cdot 2x \, dx$$

Let 
$$u = 3x^2 + 1$$
, then  $\frac{du}{dx} = 6x$  which implies  $dx = \frac{du}{6x}$ . The given integral can be written as

$$\int (3x^{2}+1)^{30} \cdot 2x \, dx = \int u^{30} \cdot 2x \frac{du}{dx}$$
$$= \frac{1}{3} \int u^{30} \, du$$
$$= \frac{1}{3} \frac{u^{31}}{31} + c$$
$$= \frac{1}{93} (3x^{2}+1)^{31} + c$$



#### Example

Evaluate 
$$\int_{0} (5x-1)^3 dx$$



Let u = 5x - 1, then  $\frac{du}{dx} = 5$  which implies  $dx = \frac{du}{5}$ . The given integral can be written as

### Method I:

When x=0, u=-1 and when x=2, u=9.

When x=0, u=-1 and when x=2, u=9.  

$$\int_{0}^{2} (5x-1)^{3} dx = \int_{-1}^{9} u^{3} \frac{du}{5}$$

$$= \frac{1}{5} \frac{u^{4}}{4} + c$$

$$= \frac{1}{5} \frac{u^{4}}{4} + c$$

$$= \frac{1}{20} [9^{4} - (-1)^{4}]$$

$$= \frac{1}{20} (6561-1) = 328$$
Calculus by Norhafizah Md Sarif  
http://ocw.ump.edu.my/course/view.php?id=452

Method II :

## Integration by Parts

Integration by parts is a technique to solve an integration in the form of product of two functions such as:

$$\int [x^2 \sin(5x)] dx$$
  
$$f(x) = x^2 \qquad g(x) = \sin(5x)$$

The main interest in integration by parts is to transform an integral into

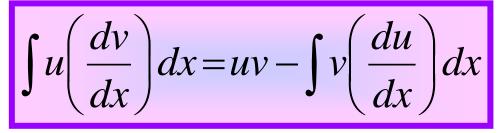
a new integral that is easier to solve than the original.

e





### Indefinite integrals:



Don't try to understand this yet. Wait for the examples that follow

Definite integrals:

$$\int_{a}^{b} u \left(\frac{dv}{dx}\right) dx = \left[uv\right]_{a}^{b} - \int_{a}^{b} v \left(\frac{du}{dx}\right) dx$$

For convenience, this can be memorized as:

$$\int u\,dv = uv - \int v\,du$$



## Integration by Parts – Guideline of Selecting U

Choose u by the following sequence:

Logarithmic (log x, lnx)

```
Algebraic (x, x^2 x^3,...)
```

1

4

**T**rigonometry (sin x, cos x, tan x,...)

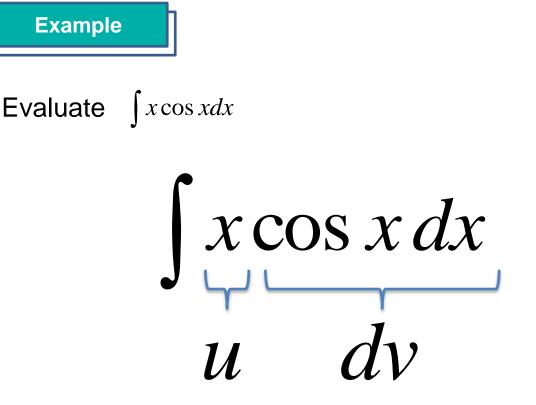
```
Exponential (e<sup>x</sup>, e<sup>4x</sup>,...)
```

and the next function automatically becomes dv.

If the new integral is more difficult than the original, change the choice of u and dv.







Why choose *x* as u instead of cos x?

x is algebraic function. Meanwhile,  $\cos x$  is a trigonometric function. Hence, algebraic function comes first before trigonometric functions. So x is chosen as u.



Differentiate u  

$$\begin{bmatrix}
u = x, & dv = \cos x dx \\
\frac{du}{dx} = 1, & v = \sin x \text{ (omit c)}
\end{bmatrix}$$
Integrate dv

Plug everything into the formula

$$\int u dv = uv - \int v du$$
$$= x \sin x - \int \sin x dx$$

Integrating  $\int \sin x dx = -\cos x + c$ . Therefore,

$$\int x \cos x dx = x \sin x - \int \sin x dx$$
$$= x \sin x - (-\cos x) + c$$
$$= x \sin x + \cos x + c$$
$$\boxed{\textbf{(c) ()}}$$

NC

BY

SA

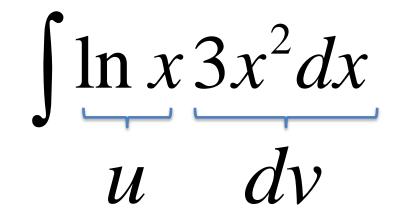
Calculus by Norhafizah Md Sarif http://ocw.ump.edu.my/course/view.php?id=452

-----



Example

Evaluate  $\int 3x^2 \ln x dx$ 



Why In x is a u?

In guideline of choosing 'u', we refer LATE in which Logarithmic (L) function comes first in the list. Hence,  $\ln x$  is chosen as u



Differentiate u  

$$\begin{aligned}
u &= \ln x, & dv = 3x^2 dx \\
\frac{du}{dx} &= \frac{1}{x}, & v = x^3 \text{ (omit c)}
\end{aligned}$$
Integrate dv

Plug everything into the formula

$$\int u dv = uv - \int v du$$
$$= x^3 \ln x - \int x^3 \left(\frac{1}{x}\right) dx$$

Integrating  $\int x^2 dx = \frac{1}{3}x^3 + c$ , we obtained,  $\int 3x^2 \ln x dx = x^3 \ln x - \int x^2 dx$   $= x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (1) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$   $ightarrow equation (2) = x \sin x - \frac{x^3}{3} + c$ ightarrow equation (2) =



#### Example

### Evaluate $\int 2xe^x dx$

$$u = 2x,$$
  $dv = e^{x} dx$   
 $\frac{du}{dx} = 2,$   $v = e^{x}$  (omit c)

By using integration by parts

$$\int u dv = uv - \int v du$$
$$= 2xe^{x} - \int e^{x} (2dx)$$
$$= 2xe^{x} - 2e^{x} + c$$





Sometimes, integration by parts must be applied several times to evaluate a given integral. See example below.

#### Example

Evaluate  $\int e^x \cos x \, dx$ 

$$u = \cos x,$$
  $dv = e^{x} dx$   
 $\frac{du}{dx} = -\sin x,$   $v = e^{x}$ 

By using integration by parts

$$\int u dv = uv - \int v du$$
  
=  $e^x \cos x - \int e^x (-\sin x dx)$   
=  $e^x \cos x + \int e^x (\sin x dx) + c$   
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$
  
$$\int e^x \cos x + \int e^x (\sin x dx) + c$$



Another integration by parts applied to the last integral, i.e.

 $\int e^x \sin x \, dx$  will complete the solution. Hence, by doing by parts once again, we obtain

$$u = \sin x,$$
  $dv = e^{x} dx$   
 $\frac{du}{dx} = \cos x,$   $v = e^{x}$ 

Substitute into the formula

$$\int e^{x} \sin x dv = uv - \int v du$$
$$= e^{x} \sin x - \int e^{x} \cos x dx$$

Substitute result in (2) into Equation (1)





$$\int e^x \cos x dx = e^x \cos x + \int e^x (\sin x dx)$$
$$= e^x \cos x + \left[ e^x \sin x - \int e^x \cos x dx \right]$$

Notice that the last term is similar to the original problem. Hence, by moving the last term into the left hand side equation, we get

$$\int e^x \cos x dx + \int e^x \cos x dx = e^x \cos x + e^x \sin x + c$$
$$2\int e^x \cos x dx = e^x \cos x + e^x \sin x + c$$

We want to find  $\int e^x \cos x \, dx$ , therefore

## **Integration by Partial Fractions**

If the integrand is in the form of an algebraic fraction and the integral cannot be evaluated by simple methods, the fraction needs to be expressed in partial fraction.

**Definition – Proper Fraction** Any rational function of x,

 $\frac{P(x)}{Q(x)}$ 

where the P(x) is less than the degree of Q(x) could be expressed as sum of relatively simpler rational functions, called partial fractions.



### **1. Linear Factor**



$$Q(x) = (a_1x + b_1)(a_2x + b_2)\dots(a_nx + b_n)$$

Partial fraction :

$$\frac{A_1}{(a_1x+b_1)} + \frac{A_2}{(a_2x+b_2)} \dots \frac{A_n}{(a_nx+b_n)}$$

### **2. Repeated Linear Factor**

 $Q(x) = (ax+b)^n$ 

Partial fraction : 
$$\frac{A_1}{(ax+b)} + \frac{A_2}{(ax+b)^2} \cdots \frac{A_n}{(ax+b)^n}$$

### 3. Quadratic Factor

$$Q(x) = \left(ax^2 + bx + c\right)$$

Partial fraction :

$$\frac{Ax+B}{(ax^2+bx+c)}$$

Example  
Evaluate 
$$\int \frac{6}{(x+3)(x+1)} dx$$
  
Step 1 Factor the denominator  
 $x^2 + 4x + 3 = (x+3)(x+1)$   
Step 2 Break up the fraction into sum of "partial fractions"  
 $\frac{6}{(x+3)(x+1)} = \frac{A}{x+3} + \frac{B}{x+1}$   
Step 3 Multiply both sides of the equation by the left side  
denominator  
 $6 = A(x+1) + B(x+3)$   
Calculus by Norhafizah Md Sartf  
http://ocump.edu.my/course/view.php?td=452



📕 Step 4

Take the roots of the linear factors and plug them, one at a time, into *x* on the equation from step 3, and solve

If 
$$x = -1$$
,  $B = 3$   
 $x = -3$ ,  $A = -3$ 

Split up the original integral and integrate



$$\int \frac{6}{(x+3)(x+1)} dx = \int -\frac{3}{x+3} + \frac{3}{x+1} dx$$
$$= -3\ln|x+3| + 3\ln|x+1| + 6$$





Evaluate 
$$\int \frac{7x+6}{x^3-3x^2} dx$$

The function can be written as

 $\frac{7x+6}{x^3-3x^2} = \frac{7x+6}{x^2(x-3)}$ 

The denominator is a combination of linear and repeated linear case,

therefore we have

$$\frac{7x+6}{x^3-3x^2} = \frac{Ax+B}{x^2} + \frac{C}{x-3}$$

We have three unknown A, B and C. Multiply both sides by the left

side of denominator,





$$7x+6 = (Ax+B)(x-3)+Cx^{2}$$
  
=  $Ax^{2}-3Ax+Bx-3B+Cx^{2}$   
=  $(A+C)x^{2}+(-3A+B)x-3B$ 

Equating the coefficient of the polynomial, where

$$x^{2}: A+C=0$$
  

$$x:-3A+B=7$$
  

$$x^{0}: -3B=6$$

Solving the simultaneous equation, we obtain A = -3, B = -2, C = 3. Alternatively, A, B and C can be found using the another approach.

lf

$$x = 3, \quad 9C = 27 \rightarrow C = 3$$
  
 $x = 0, \quad 6 = -3B \rightarrow B = -2$   
 $x = 1, \quad 13 = -2(A - 2) + 3 \rightarrow A = -3$ 





Hence,

$$\frac{7x+6}{x^3-3x^2} = \frac{-3x-2}{x^2} + \frac{3}{x-3}$$

The integration becomes

$$\int \frac{7x+6}{x^3-3x^2} dx = \int \frac{-3x-2}{x^2} + \frac{3}{x-3} dx$$
$$= \int \frac{-3x}{x^2} dx - \int \frac{2}{x^2} dx + \int \frac{3}{x-3} dx$$

Simplify whenever necessary and then integrate

$$\int \frac{7x+6}{x^3-3x^2} dx = \int \frac{-3}{x} dx - \int 2x^{-2} dx + \int \frac{3}{x-3} dx$$
$$= -3\ln|x| + \frac{2}{x} + 3\ln|x-3| + c$$



## Conclusion

- In integration by substitution, making appropriate choices for *u* will come with experience.
- Selecting u for by part techniques should follow the LATE guideline.
- If the power of denominator is less than the power of numerator,
   then the fraction is called proper fraction





### **Author Information**

#### Norhafizah Binti Md Sarif

Email: norhafizah@ump.edu.my Google Scholar: <u>Norhafizah Md Sarif</u> Scopus ID : <u>57190252369</u> UmpIR ID: <u>3479</u> Norazaliza Binti Mohd Jamil

Email: <u>norazaliza@ump.edu.my</u> Google Scholar: <u>Norazaliza Mohd Jamil</u> Scopus ID : <u>42061495500</u>

