Exercise 6: Applications of Differentiation

Topic 6.1 : Maximum \& Minimum

1. Given $f(x)=x^{3}-6 x^{2}+9 x+1$, find if exist, the point of inflection, the minimum and maximum point using a) first derivative test b) second derivative test
$[(1,5)$ max point, $(3,1)$ min point, $(2,3)$ point of inflection]
2. Given $f(x)=2 x^{4}-8 x^{3}+45$, find:
(i) the critical points and determine their nature
(ii) the point of inflection
$[(3,-9)$ min point, $(0,45)$ and $(2,13)$ point of inflection]
3. Given $f(x)=x(5-x)^{2}$
(i) find the stationary points and determine their nature
(ii) find the point of inflection
(iii) hence, sketch the graph

$$
\left[\left(\frac{5}{3}, \frac{500}{27}\right) \text { max point, }(5,0) \text { min point, }\left(\frac{10}{3}, \frac{250}{27}\right) \text { point of inflection }\right]
$$

4. Find if exist, the point of inflection, the minimun and maximum points for each of the following curves
(i) $f(x)=x^{2}-6 x+8$
(ii) $f(x)=-x^{2}+x+3$
(iii) $f(x)=x^{3}-12 x$
(iv) $f(x)=-x^{3}+3 x^{2}$
$\left[\begin{array}{ll}\begin{array}{ll}\text { (a) }(3,-1) \min \text { point, } & \text { (b) }\left(\frac{1}{2}, \frac{13}{4}\right) \text { max point, } \\ \text { (c) }(2,-16) \text { min point, }(-2,16) \text { max point, }(0,0) \text { point of inflection } \\ \text { (d) }(0,0) \text { min point, }(2,4) \text { max point, }(1,2) \text { point of inflection }\end{array}\end{array}\right.$
5. Given $f(x)=x^{3}-9 x^{2}+15 x$, find if exist, the point of inflection, the minimum and maximum point using a) first derivative test b) second derivative test. Hence sketch the graph.
$[(1,7)$ max point, $(5,-25)$ min point, $(3,-9)$ point of inflection]
6. Given $f(x)=x^{3}-6 x^{2}+9 x+1$, find if exist, the point of inflection, the minimum and maximum point using a) first derivative test b) second derivative test

$$
[(1,5) \text { max point, }(3,1) \text { min point, }(2,3) \text { point of inflection }]
$$

7. Given $f(x)=5-9 x+6 x^{2}-x^{3}$
(i) find the critical point and determine their nature
(ii) find the point of inflection
(iii) hence, sketch the graph
$[(3,5) \max$ point, $(1,1)$ min point, $(2,3)$ point of inflection $]$
8. Find if exist, the point of inflection, the minimun and maximum points for the curve $f(x)=x^{3}-x^{2}-x$

$$
:\left[\left(-\frac{1}{3}, \frac{5}{27}\right) \max \text { point, (1,-1) min point }\right]
$$

33. Sketch the graph of $f(x)=x^{4}-16 x^{2}+1$, indicating max and min points and points of inflection

$$
[(\pm 2 \sqrt{2},-63) \text { min point, }(0,1) \text { max point, }(\pm 0.94,-12.43) \text { point of inflection }]
$$

34. Given $f(x)=x^{3}(4-x)$, find if exist, the point of inflection, the max and min points.
$[(3,27)$ max point, $(0,0)$ point of inflection]
