

Calculus Applications of Differentiation

By

Norhafizah Md Sarif Faculty of Industrial Science & Technology norhafizah@ump.edu.my

Description

<u>Aims</u>

This chapter is aimed to :

- 1. introduce the concept of integration
- 2. evaluate the definite and indefinite integral
- 3. explain the basic properties of integral
- 4. compute the integral using different techniques of integration

Expected Outcomes

- 1. Students should be able to describe the concept of antiderivatives
- 2. Students should be able to explain about indefinite integral and definite integral
- 3. Students should be able to know the basic properties of definite integrals
- 4. Student should be able to determine the appropriate techniques to solve difficult integral.

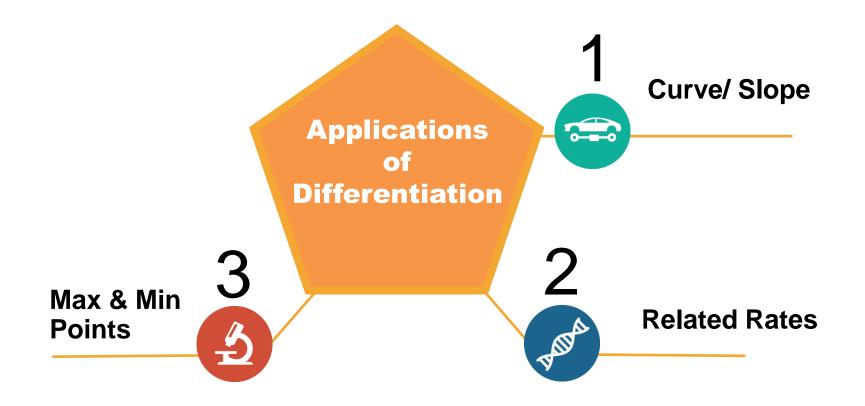
References

 Abdul Wahid Md Raji, Hamisan Rahmat, Ismail Kamis, Mohd Nor Mohamad, Ong Chee Tiong. The First Course of Calculus for Science & Engineering Students, Second Edition, UTM 2016.

Content

Maximum and Minimum

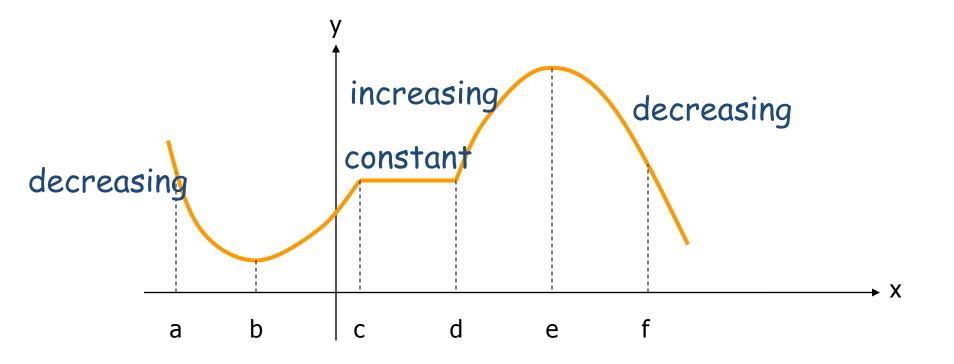
- First Derivative Test
- Second Derivative Test
- Inflection Point(s)



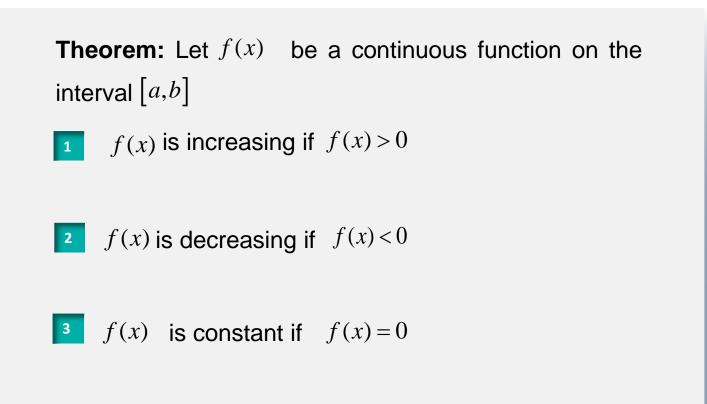
Minimum and Maximum Point highest point **lowest point**

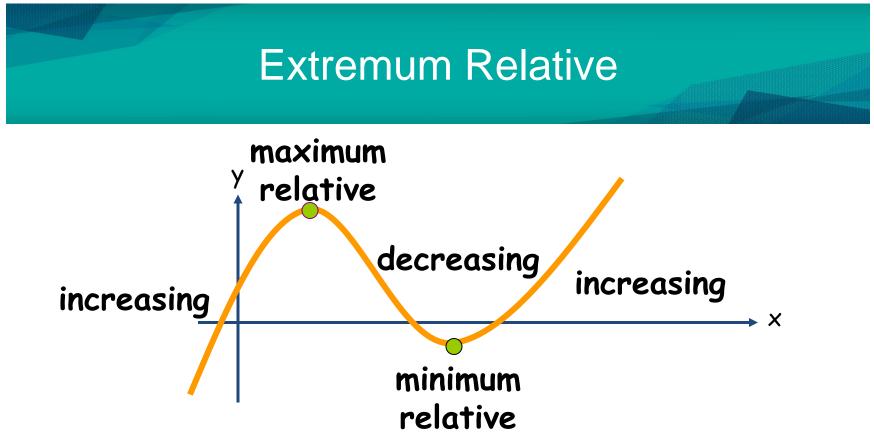
Increasing or Decreasing?

The shape of a graph is related to its defining equation. By analyzing the equation we are able to determine the properties of the graph.



Increasing/Decreasing

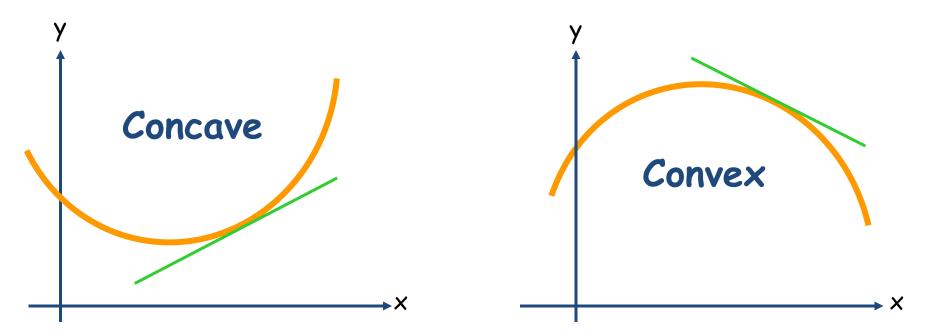




- Refer to the maximum relative and minimum relative point
- Also known as local maximum and local minimum point
- Only at critical points or stationary points
- Not all critical points are extremum relative

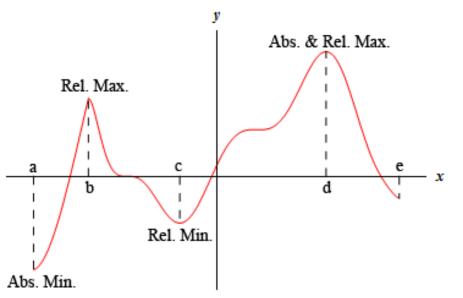
Concavity and Convex

There is another useful way to describe a curve that is convexity and concavity. A curve is said to be concave at the point P if, at a neigbourhood of point P, the curve lies above the tangent line at the point P. Otherwise, it is convex.



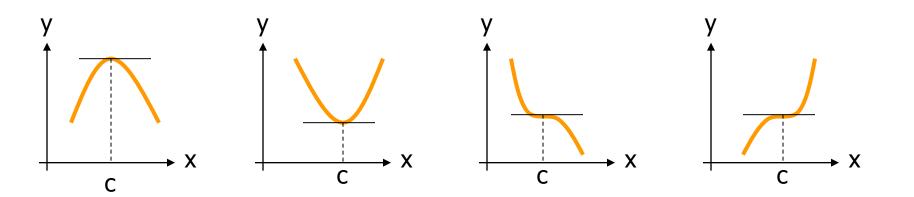
Critical Values

A point (c, f(c)) of the function f(x) is a critical values if f'(c) = 0 or if does not exist



If f'(x) is a quadratic function or a function of higher order, then there is possibility of having more than one critical values.

Tangent line (horizontal) at $x=c \rightarrow f'(c) = 0$;



Find the critical points of the curve

$$f(x) = \frac{1}{3}x^3 - 2x^2 + 3x + 1$$

Answer : The critical points are $\left(1, \frac{7}{3}\right)$ and $\left(3, 1\right)$

First Derivative Test

MAXIMUM AND MINIMUM VALUE

First derivative test

Suppose c is the critical point.

a. If f' changes positive to negative at c, then f has a relative maxima at c

x	x < c	x > c
f'(x)	+	-
Slope		

b. If f' changes negative to positive at c, then f has a relative minima at c

×	x < c	x>c
f'(x)	-	+
Slope		

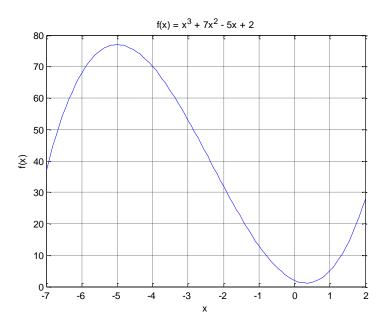
c. If f' does not change in sign at c, then f has **no relative maxima or minima** at c

X	x < c	x > c
f'(x)	+	+
Slope		
		_

Find all the critical points of the curve and determine their nature using by using first derivative test

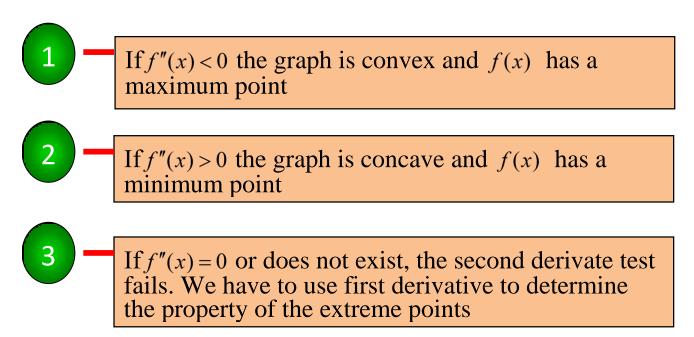
(a)
$$f(x) = x^2 - 4x - 1$$

(b) $f(x) = x^3 - 12x + 3$
(c) $f(x) = x^3 - 2x^2 + x$



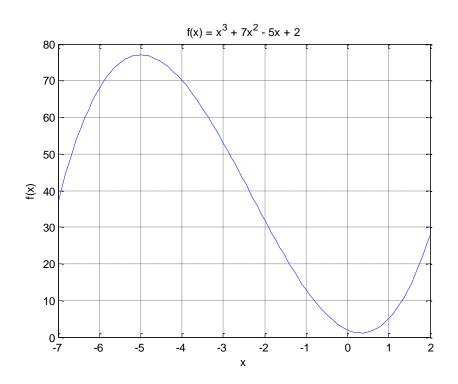
Second Derivative Test

Assuming that y = f(x) has a critical point at $x = x_0$



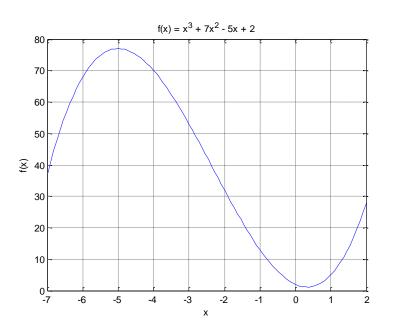
Find all the critical points of the curve and determine their nature using by using second derivative test

(a) $f(x) = x^2 - 4x - 1$ (b) f(x) = |x|(c) $f(x) = x^3 - 2x^2 + x$



Given $y = x^3 + 7x^2 - 5x + 2$. Find all the critical points of the curve and determine their nature using:

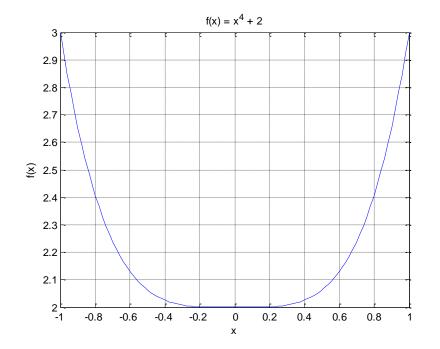
- (a) First derivative test
- (b) Second derivative test



Find the critical points of $y = 2x^3 - 3x^2 - 36x + 14$ and state their nature.

Find the stationary point on the curve $y = x^4 + 2$ and determine the nature of

that point.



Given $y = \frac{x^3}{3} - \frac{x^2}{2} - 2x + 5$, find if exist, the inflection point, maximum and

minimum points using

- (a) first derivative test
- (b) second derivative test

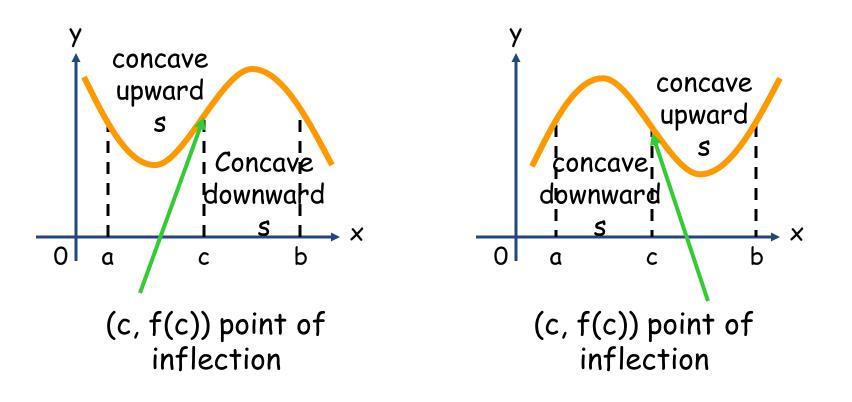
Point of Inflection

- A point which separates a convex and a concave sections of a continuous function is called a point of inflection.
- □ If f''(c) = 0 or if f''(c) does not exist, and if the value of f''(c) changes sign then (c, f(c)) on the curve is a point of inflection.

* For point of inflection, not all f'(c) = 0, but f''(c) = 0

Let f be any function and (c,f(c)) is a point of inflection if:

- a) f''(x)>0 for (a, c) and f''(x)<0 for (c, b) OR
- b) f''(x)<0 for (a, c) and f''(x)>0 for (c, b)



Given $y = 2\sin x + \cos 2x$ find if exist, the inflection point, maximum and

minimum points using second derivative test

Find the inflection point of the curve

$$f(x) = x^3 - 3x^2 + 5$$

Answer: (1,3) is an inflection point

Given $y = 3x^4 - 4x^3$, find if exist, the inflection point, maximum and minimum

points using

- (a) first derivative test
- (b) second derivative test

Conclusion

- In integration by substitution, making appropriate choices for *u* will come with experience.
- Selecting u for by part techniques should follow the LATE guideline.
- If the power of denominator is less than the power of numerator, then the fraction is called proper fraction

Author Information

Norhafizah Binti Md Sarif Lecturer Faculty of Industrial Sciences & Technology (website) Universiti Malaysia Pahang Email: norhafizah@ump.edu.my Google Scholar: : Norhafizah Md Sarif Scopus ID : <u>57190252369</u> UmpIR ID: <u>3479</u>