Exercise 5: Applications of Differentiation

Topic 5.1: Curve Slope at a Point

1. Find the gradient of each of the following curves at the given points
a) $y=2 x^{2}-4 x-8 ; \quad x=3$
b) $4 y=7 x^{3} ; \quad x=2$
c) $y=2 x^{3}+3 x^{2}-14 x+4 ; \quad x=1$
d) $y=(1+2 x)^{2} ; \quad x=9$
e) $y=\frac{4}{x} ; \quad x=3$
f) $y=(-x-2)\left(4+5 x^{2}\right) ; x=2$
g) $y=\frac{3 x+1}{-x+4} ; \quad x=1$

$$
\left[\text { a) } 8 \text {, b) } 21, \text { c) }-2, \text { d) } 76 \text {, e) }-\frac{4}{9}, \text { f) }-104, \text { g) } \frac{13}{9}\right]
$$

2. Find the gradient of the curve $y=5+2 x-x^{2}$ at the point where the curve meets the y-axis
3. The gradient of the curve $y=a x^{2}+b$ at the point $(2,3)$ is 8 . Find the value of a and b.

$$
[a=2, b=-5]
$$

4. Find an equation of the tangent line to the graph $f(x)=\frac{1}{x}$ at the point where $x=2$

$$
\left[y=-\frac{1}{4} x+1\right]
$$

5. Find the slope of the curve $y^{2}=x^{3}$ at the point $P\left(t^{2}, t^{3}\right)$
6. A curve is given by the parametric equations

$$
x=t+\frac{2}{t}, \quad y=t-\frac{1}{t} \quad t \neq 0
$$

Find the gradient of the curve when $t=4$

$$
\left[\frac{17}{14}\right]
$$

7. Find the slope of the curve $x^{2} y+x y^{2}=14$ at the point $(1,3)$

$$
\left[-\frac{15}{7}\right]
$$

8. A curve has a parametric equations

$$
x=t^{2}-1, \quad y=t\left(t^{2}+1\right)
$$

Find $\frac{d y}{d x}$ in terms of t

$$
\left[\frac{3 t^{2}+1}{2 t}\right]
$$

9. Find the value of $\frac{d y}{d x}$ at the point $\left(\frac{2}{3} r, \frac{2}{3} r\right)$ on the curve $x^{3}+y^{3}=3 x r y$
10. Find an expression in terms of x, y and q for the gradient at any point on the curve $x^{3}+y^{3}=3 q y^{2}$ with q as a constant.

$$
\left[-\frac{3 x^{2}}{3 y^{2}-6 q y}\right]
$$

11. The parametric equations of a curve is given by

$$
x=t^{2}+1, \quad y=t^{3}
$$

Show that the point $(5,-8)$ is a point on the curve and find the equation of tangent to the curve at that point.

$$
[3 x+y=7]
$$

Topic 5.2 : Rate of Change/Related Rates/Motion

12. The radius of a circle is increasing at the rate of $\frac{1}{2} \mathrm{cms}^{-1}$. Find the rate of change of the area when the radius is 4 cm .

$$
\left[\frac{d A}{d t}=4 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right]
$$

13. The side of a cube is increasing at the rate of $6 \mathrm{~ms}^{-1}$. Find the rate of change of the volume when the length of a side is 9 m .

$$
\left[\frac{d V}{d t}=1458 \mathrm{~m}^{2} \mathrm{~s}^{-1}\right]
$$

14. Oil from leaking oil tanker radiates outward in the form of circular film on the surface water. If the radius of the circle increases at the rate of $3 \mathrm{~m} / \mathrm{min}$, how fast is the area of the circle increasing when the radius is 200 m . *area of circle $=\pi r^{2}$

$$
\left[\frac{d A}{d t}=1200 \pi \mathrm{~m}^{2} / \mathrm{min}\right]
$$

15. A cylindrical container has one end opened and the other end closed. It has a circular base of radius $r \mathrm{~cm}$. Given that the total surface area of the container is $300 \pi \mathrm{~cm}^{2}$. Show that the volume of the container is $V=150 \pi r-\frac{\pi r^{3}}{2}$
16. The volume of a spherical balloon is increasing at a constant rate of $0.05 \mathrm{~m}^{3} / \mathrm{s}$. Find the rate of increase of its radius when the volume of the balloon is $0.008 \mathrm{~m}^{3}$. Given, volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
\left[\frac{d r}{d t}=0.26 \mathrm{cms}^{-1}\right]
$$

17. Water is poured into an inverted right circular cone, with radius at the top 5 m and depth 10 m at a rate of $8 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. Find the rate at which depth of the water is increasing when the depth is 4 m .

$$
\left[\frac{d h}{d t}=\frac{2}{\pi} \mathrm{~ms}^{-1}\right]
$$

18. The area of a square is increasing at the rate of $8 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. Find the rate of increase of the length of a side when the area is $64 \mathrm{~cm}^{2}$.

$$
\left[\frac{1}{2} \mathrm{cms}^{-1}\right]
$$

19. A spherical balloon is being inflated and, at the instant when its radius is 3 m , its surface area is increasing at a rate of $2 \mathrm{~m}^{2} \mathrm{~s}^{-1}$. Find the rate of increase at the same instant of a) the radius b) the volume

$$
\left[\text { a) } \frac{1}{12 \pi} \mathrm{cms}^{-1} \text {, b) } 3 \mathrm{~m}^{3} \mathrm{~s}^{-1}\right]
$$

20. A conical cup is 4 cm across and 6 cm deep. Water leaks out of the bottom at the rate of $2 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. How fast is the water level dropping when the height of the water is 3 cm ?

$$
\left[\frac{2}{\pi} \mathrm{cms}^{-1}\right]
$$

21. Air is escaping from a spherical balloon at the rate of $2 \mathrm{~cm}^{3}$ per minute. How fast is the surface area shrinking when radius is 1 cm ?

$$
\left[\frac{1}{3} \mathrm{~cm}^{2} / \mathrm{min}\right]
$$

22. An airplane is flying towards a radar station at a constant height of 6 km above the ground. If the distance, s between the airplane and the radar station is decreasing at a rate 400 km per hour when $s=10 \mathrm{~km}$, what is the horizontal speed of the plane?
[500 km per hour]
23. The radius of a right circular cylinder is increasing at the rate of $4 \mathrm{~cm} / \mathrm{s}$ but its total surface area remains constant at $600 \pi^{2}$. At what rate is the height changing when the radius is 10 cm ?

$$
\text { Ans: }\left[16 \mathrm{cms}^{-1}\right]
$$

24. Assume that sand allowed to pour onto a level surface will form a pile in the shape of a cone, with height equal to diameter of the base. If sand is poured at 2 cubic meters per second, how fast is the height of the pile increasing when the base is 8 meters in diameters?

$$
\left[\frac{1}{8 \pi} \mathrm{~ms}^{-1}\right]
$$

25. A stone is thrown vertically upwards from a place 10 meters from the ground with an initial velocity of $23 \mathrm{~ms}^{-1}$. After t seconds, the height of the stone from the ground is given by

$$
x=-5 t^{2}+23 t+10
$$

(i) Find the time when the stine reaches the highest position from the ground
(ii) Calculate the maximum height
(iii) Find the time when the stone touches the ground again

$$
\text { [(i) } 2.3 \mathrm{~s} \text {, (ii) } 36.45 \mathrm{~m} \text {, (iii) } t=5 \mathrm{~s}]
$$

26. A particle is moving along a straight line so that its position from the fixed point A at any time t seconds is given by

$$
x=t^{2}-5 t+6
$$

Find,
(i) its initial position
(ii) its initial velocity
(iii) the first time the particle passes A and find the velocity at that time
(iv) the second time the particle passes A again and determine the velocity at that time
(v) the time and the position of the particle when the velocity is zero.

$$
\left[\text { (i) } 6 \mathrm{~m}, \text { (ii) }-5 \mathrm{~ms}^{-1} \text {, (iii) } 2 \mathrm{~s},-1 \mathrm{~ms}^{-1} \text {, (iv) } 3 \mathrm{~s}, 1 \mathrm{~ms}^{-1} \text {, (v) } 2.5 \mathrm{~s},-0.25 \mathrm{~m}\right]
$$

27. After t seconds the position of a particle which is moving along a straight line is $x=2 t^{3}-9 t^{2}+12 t+6$
(i) When is the acceleration zero? Determine the velocity at that time?
(ii) When is the velocity zero? Determine the accelaration at that time?

$$
\left[\text { (i) } 1.5 \mathrm{~s},-1.5 \mathrm{~ms}^{-1} \text {, (ii) } 1 \mathrm{~s} \text { or } 2 \mathrm{~s}, \pm 6 \mathrm{~ms}^{-2}\right]
$$

28. Ladder 9 meters long leaning against a wall. The bottom of a ladder is pulled along the ground away from the wall at a constant rate of 1 meter per second. How fast will the top of the ladder be falling when the ladder is 3 meters away from the wall.?

$$
\left[-0.35 \mathrm{~ms}^{-1}\right]
$$

29. The area Acm^{2} of the image of a missile on the screen is given by $\mathrm{A}=12 / \mathrm{r}^{2}$, where r is the distance from the missile to radar. The missile is approaching the radar at a rate of $0.5 \mathrm{kms}^{-1}$. Find the rate of change of the area of image when the missile is 10 km away. If the rate of change is $0.096 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$, how far is the missile from the radar?

$$
\left[0.012 \mathrm{~cm}^{2} \mathrm{~s}^{-1}, 5 \mathrm{~km}\right]
$$

