

Calculus Differentiation

By

Norhafizah Md Sarif Faculty of Industrial Science & Technology norhafizah@ump.edu.my

Description

<u>Aims</u>

This chapter is aimed to :

- 1. introduce the concept of integration
- 2. evaluate the definite and indefinite integral
- 3. explain the basic properties of integral
- 4. compute the integral using different techniques of integration

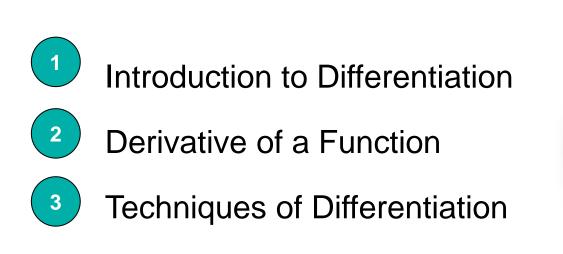
Expected Outcomes

- 1. Students should be able to describe the concept of antiderivatives
- 2. Students should be able to explain about indefinite integral and definite integral
- 3. Students should be able to know the basic properties of definite integrals
- 4. Student should be able to determine the appropriate techniques to solve difficult integral.

References

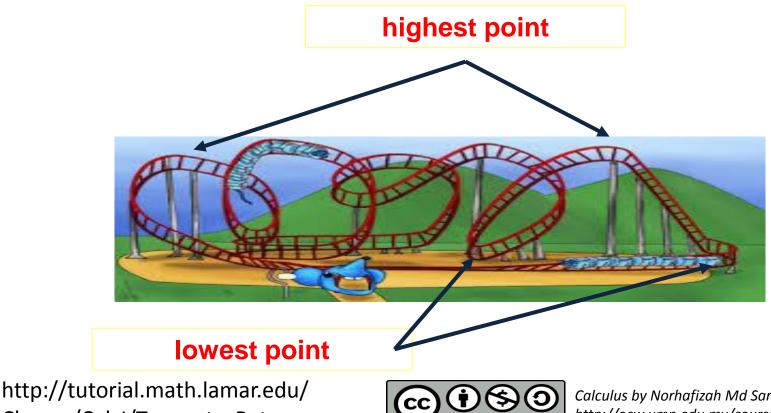
 Abdul Wahid Md Raji, Hamisan Rahmat, Ismail Kamis, Mohd Nor Mohamad, Ong Chee Tiong. *The First Course of Calculus for Science & Engineering Students*, Second Edition, UTM 2016.

Content



Applications

Do you know that we can use differentiation to find the highest point and the lowest point of the roller coaster track?



Classes/Calci/Tangents Rates.as

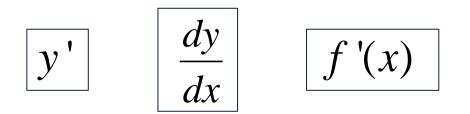
DX

- We use the derivative to determine the maximum and minimum values of particular functions
 - cost, strength,
 - amount of material used in a building
 - profit & loss

Introduction to Differentiation

Differentiation is all about finding rates of change of one quantity compared to another.

- □ The process of finding a derivative is called differentiation
- □ The most common notations for the derivative are



Derivative of a Function

Definition – First Principle: The derivative of the function f(x)

with respect at a point (x) if the function where

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The process of finding derivative using the above definition is called the first principle.

Differentiation using first principle

- ² Write an expression for f(x+h)
- ³ Substitute f(x) and f(x+h) into the formula
- 4 Simplify the expression
- 5 Evaluate limit

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

By using differentiation from the first principle, find the derivatives of the following functions

(a)
$$-4$$
 (b) $2x+5$ (c) $\frac{1}{x}$ (d) $\sqrt{x+2}$

(a) Given f(x) = 4, then f(x+h) = 4

Substitute f(x) and f(x+h) into first principle formula,

$$f'(x) = \lim_{h \to 0} \frac{4 - h}{h}$$

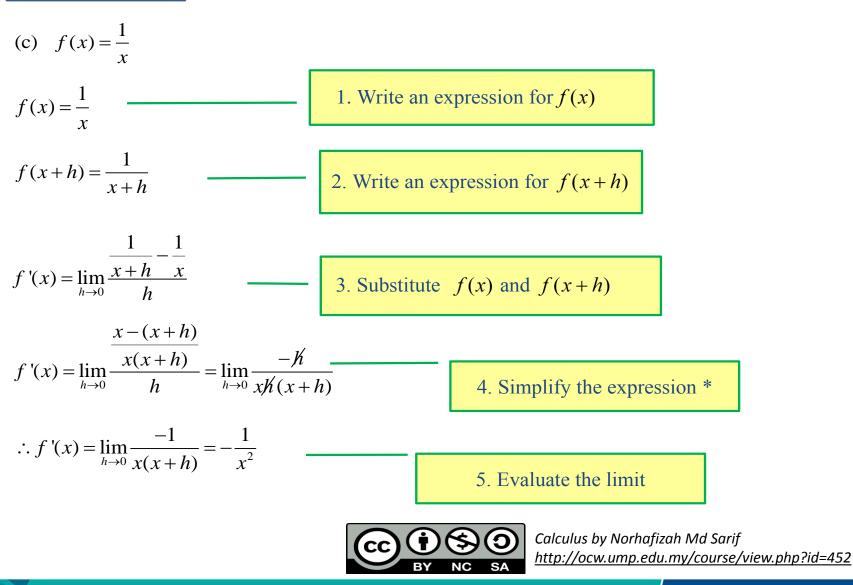
So,

$$\therefore f'(x) = 0$$

Example

(b) f(x) = 2x + 51. Write an expression for f(x)f(x) = 2x + 52. Write an expression for f(x+h)f(x+h) = 2(x+h) + 5 $f'(x) = \lim_{h \to 0} \frac{2(x+h) + 5 - 2x + 5}{h}$ 3. Substitute f(x) and f(x+h) $\therefore f'(x) = \lim_{h \to 0} \frac{2 \not h}{\not h} = \lim_{h \to 0} 2 = 2$ 5. Evaluate the limit 4. Simplify the expression Calculus by Norhafizah Md Sarif http://ocw.ump.edu.my/course/view.php?id=452

Example



(d)
$$f(x) = \sqrt{x+2}$$

$$f(x+h) = \sqrt{x+h+2}$$

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h+2} - \sqrt{x+2}}{h}$$

= $\lim_{h \to 0} \frac{\sqrt{x+h+2} - \sqrt{x+2}}{h} \cdot \frac{\sqrt{x+h+2} + \sqrt{x+2}}{\sqrt{x+h+2} + \sqrt{x+2}}$
= $\lim_{h \to 0} \frac{(x+h+2) - (x+2)}{h(\sqrt{x+h+2} + \sqrt{x+2})}$
= $\frac{1}{\sqrt{x+2} + \sqrt{x+2}}$
= $\frac{1}{2\sqrt{x+2}}$
Multiply the numerator and denominator with conjugate

Common Functions	Functions	Derivatives
Constant	<i>y</i> = <i>c</i>	$\frac{dy}{dx} = 0$
Power	$y = x^n$	$\frac{dy}{dx} = nx^{n-1}$
Exponential	$y = e^x$	$\frac{dy}{dx} = e^x$
	$y = a^x$	$\frac{dy}{dx} = a^x (\ln a)$
Logarithms	$y = \ln x$	$\frac{dy}{dx} = \frac{1}{x}$
	$y = \log_a x$	$\frac{dy}{dx} = \frac{1}{x \ln a}$
Trigonometry (x is in rad)	$y = \sin x$	$\frac{dy}{dx} = \cos x$
	$y = \cos x$	$\frac{dy}{dx} = -\sin x$
	$y = \tan x$	$\frac{dy}{dx} = \sec^2 x$
	$y = \sec x$	$\frac{dy}{dx} = \sec x \tan x$
Hyperbolic	$y = \sinh x$	$\frac{dy}{dx} = \cosh x$
	$y = \cosh x$	$\frac{dy}{dx} = -\sinh x$
	$y = \tanh x$	$\frac{dy}{dx} = \operatorname{sech}^2 x$
Inverse Trigonometry	$y = \sin^{-1} x$	$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$
	$y = \cos^{-1} x$	$\frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}}$
	$y = \tan^{-1} x$	$\frac{dy}{dx} = \frac{1}{1+x^2}$

Calculus by Norhafizah Md Sarif http://ocw.ump.edu.my/course/view.php?id=452

Communitising Technology

Techniques of Differentiation

Definition – Chain Rule: If y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

The process of finding derivative using the above definition is called the chain rule.

Basic function such as $\sin t$, e^t , $\ln t$ can be solve using table of differentiation. However, for case $\sin t^2$, e^{3t-2} , $\ln 5t$ we need to use chain rule to obtain the solution.

Example

Differentiate the following functions (a) $y = (3x+5)^4$, (b) $y = \sqrt{1-t^2}$, (c) $y = 5\sin(2x^3)$,

(a)
$$y = (3x+5)^4$$
 and $u = 3x+5$, hence $y = u^5$
Then, $\frac{dy}{du} = 5u^4$, and $\frac{du}{dx} = 3$
 $\therefore \quad \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = (5u^4)(3) = 15u^4 = 15(3x+5)^4$

BY

□ How about these examples?

(a)
$$y = (4x+1)^{2}(3x)$$

(b) $y = x \sin x$
(c) $y = t^{2}e^{t}$
(d) $y = e^{-2t} \cos(3t)$
(e) $y = \frac{x}{x+3}$
(f) $y = \frac{\sin x}{x}$
(g) $y = \frac{4e^{-2x}}{1+x^{2}}$

Techniques of Differentiation

Product rule is a formula used to find the derivatives of product of two or more functions

Definition – Product Rule: If u(x) and v(x) are differentiable

function and $y = u(x) \cdot v(x)$, then

$$\frac{dy}{dx} = v\frac{dy}{du} + u\frac{dv}{dx}$$

Differentiate the following functions

Example

(a) y = (4x+1)(3x), (b) $y = e^{-2t} \cos(3t)$, (c) $y = x \sin x$

(a)
$$\frac{dy}{dx} = (4x+1)\frac{d}{dx}(3x) + \frac{d}{dx}(4x+1)\cdot(3x)$$
$$= (4x+1)\cdot(3) + (4)\cdot(3x)$$
$$= 24x+3$$

(b)
$$\frac{dy}{dt} = e^{-2t} \frac{d}{dx} (\cos 3t) + \frac{d}{dx} (e^{-2t}) \cdot \cos(3t)$$
$$= e^{-2t} \cdot (-3\sin 3t) + (-2e^{-2t}) \cdot \cos(3t)$$
$$= -3e^{-2t} \sin 3t - 2e^{-2t} \cos 3t$$

Techniques of Differentiation

The quotient rule is a formal rule for differentiating problems where one function is divided by another

Definition – Quotient Rule: If u(x) and v(x) are differentiable function and $y = \frac{u(x)}{v(x)}$ where $v(x) \neq 0$, then $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

Example

Differentiate the following functions

(a)
$$y = \frac{4x+1}{3x}$$
, (b) $y = \frac{\sin x}{x}$, (c) $y = \frac{4e^{-2x}}{1+x^2}$

(a)
$$\frac{dy}{dx} = \frac{3x \cdot \frac{d}{dx} (4x+1) - \frac{d}{dx} (3x) \cdot (4x+1)}{(3x)^2}$$
$$= \frac{3x(4) - 3 \cdot (4x+1)}{(3x)^2} = -\frac{1}{3x^2}$$

(b)
$$\frac{dy}{dx} = \frac{x \cdot \frac{d}{dx} (\sin x) - \frac{d}{dx} (x) \cdot (\sin x)}{x^2}$$
$$= \frac{x(\cos x) - 1 \cdot \sin x}{x^2} = \frac{x \cos x - \sin x}{x^2}$$

Conclusion #1

- Any indefinite integral will have +c at the end of the solution.
- There are two approach in getting the solution of definite integral: by changing the limit of x into u, or by changing function u into x and use the original limit.
- Product or quotient function cannot be integrate directly. Appropriate techniques should be used to solve this type of integral
- In integration by substitution, making appropriate choices for *u* will come with experience.
- □ Selecting u for by part techniques should follow the LATE guideline.
- □ If the power of denominator is less than the power of numerator, then the fraction is called proper fraction BY NC SA
 Calculus by Norhafizah Md Sarif
 <u>http://ocw.ump.edu.my/course/view.php?id=452</u>

Author Information

Norhafizah Binti Md Sarif Lecturer Faculty of Industrial Sciences & Technology (website) Universiti Malaysia Pahang Email: norhafizah@ump.edu.my Google Scholar: : Norhafizah Md Sarif Scopus ID : <u>57190252369</u> UmpIR ID: <u>3479</u>

Calculus by Norhafizah Md Sarif http://ocw.ump.edu.my/course/view.php?id=452

Communitising Technology