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INSTRUCTIONS TO CANDIDATES

1. This question paper consists of SIX (6) questions. Answer ALL questions.

2. Use FOUR (4) decimal places in all calculations, EXCEPT for Question 6 use
SEVEN (7) decimal places.

All answers to a new question should start on new page.

All the calculations and assumptions must be clearly stated.

Candidates are not allowed to bring any material other than those allowed by the
invigilator into the examination room.
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EXAMINATION REQUIREMENT

1. Scientific calculator.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

This examination paper consists of TEN (10) printed pages including front page.



CONFIDENTIAL BEE/BEP/BEC/BMM/BMF/BMA/BMI/BMB/BAA/
BAE/BFF/BFM/12131/BUM2313/BMM2112

QUESTION 1

Given the following linear equations

2X =X, + X, =-1
X, — X, + 2%, =—3
X, +2X, — %X, =6

(@ If necessary, rearrange the equations to make a system diagonally dominant
(b) Derive Gauss Seidel’s formula from the linear equations obtained in (a)
(c) Determine the solution of the linear equations using THREE iterations of the

Gauss-Seidel method. Compute the approximate percent relative error, &, after

each iteration. Let x® =(0,0,0).

(16 Marks)

QUESTION 2

Concentrations of CO, in the Earth's atmosphere (parts per million) derived from
remediation air measurements at the Mauna Loa Observatory, Hawaii: Latitude 19.5A°N
Longitude 155.6A°W Elevation 3397 m from year of 2008 to 2013 for the first six
months are listed in Table 1. Use third-order Newton interpolation to estimate the
concentrations of CO; in the Earth's atmosphere (parts per million) in June 2012.

[Hint : Choose the sequence of the points for your estimates to attain the best possible

accuracy]
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Table 1: Concentrations of CO; in the Earth's atmosphere (parts per million) derived

from remediation air measurements at the Mauna Loa Observatory, Hawaii.

Concentrations of CO; in the Earth's atmosphere
Year (parts per million)
January | February | March April May June

2008 385.07 385.85 385.81 386.77 | 388.51 388.06
2009 386.65 387.13 388.52 389.57 | 390.16 389.62
2010 388.55 390.06 391.02 392.38 | 393.22 392.24
2011 391.30 391.94 392.45 393.37 | 394.29 393.69
2013 395.66 396.89 397.27 398.35 | 399.89 398.78

(Source: http://co2now.org/Current-CO2/C0O2-Now/noaa-mauna-loa-co2-data.html)

QUESTION 3

(13 Marks)

A certain species of microbial has concentration P(t) at time t whose growth rate is

affected by seasonal variations in the food supply. Suppose the microbial concentration

(9/L) can be modelled as follows

P(t) =Ltk(P(tO)+A)|cosu|du

where P(t,) is the initial concentration, k and A are physical constants. If initially there

is 0.0315 (g/L) microbial concentration, k =0.5 and A=15, find the concentration of the

microbial for time interval 1<t <12 by using

(@ single Trapezoidal rule

(b) composite Trapezoidal rule with a step size of 1

(c) Simpson’s rule with a step size of 1.

[Hint : Use radian mode]

(15 Marks)


http://co2now.org/Current-CO2/CO2-Now/noaa-mauna-loa-co2-data.html
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QUESTION 4

Evaporating raindrop describe about raindrop falls when it evaporates while retaining its
spherical shape. If we make the further assumptions that the rate at which the raindrop
evaporates is proportional to its surface area and that air resistance is negligible, then a
model for the velocity v(t) at any timet in second of the raindrop is
dv 3[;) .
=g—-—————V with v(0)=0.

- = g _
at [kjt+
Y2

In this equation, pis the density of water, r, is the radius of the raindrop at t=0, k is

fo

the constant of proportionality and g is the gravity. The radius of the raindrop at time t

is given by
K
r(t) = (—jt +1 1)
Yo
Suppose that r, =0.01ft, r =0.007 ft after 10 seconds the rain falls from a cloud and

g=32 % . Find the velocity of the raindrop at t =10seconds by using the fourth order

Runge-Kutta method. Use step size h =10 seconds.

[Hint : Term LS can be obtained from equation (1)]
P

(12 Marks)
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QUESTION 5

Use the shooting method to solve

2
59 2%y x0
dx dx

with the boundary conditions y(0)=5andy(10)=15. Perform Euler’s method
throughout your calculation with step size, h=5. Use initial guess with
z(0) =—10 and z(0) =10.

(22 Marks)

QUESTION 6

The differential equation of the elastic curve for a uniformly loaded beam is formulated
as
d’y  wLx wx?

— —+ =
dx>* 10 8

where M and p represent the modulus of elasticity and moment of inertia respectively.

Mp 0, y(0)=0, y(12) =180

@ 1t M=30000 "/ p=66 ft, w=1 ki% and L =10 ft use a Finite Difference

method with a time step, Ax=3 to reduce the above boundary value problem to a

tridiagonal system

(b)  Solve the tridiagonal system in (a) by using Thomas algorithm method for Ax =3.

[Hint : Use seven decimal places]

(22 Marks)

END OF QUESTION PAPER
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APPENDICES

Chapter 1: Errors

True Error
E, = true value - approximation value

True percent relative error

true value —approximation value
g = PP <100
true value |

Approximate percent relative error

. = | present approximation — previous approximation
=

|><100

true value

Stopping criterion
Terminate computation when |e, | < &,

Chapter 2: Roots of Equations

Bisection method
X = (X, +x,)
2

False-position method
X =X, — f(Xu)(X| _Xu)
f(x)-f(x)

Secant method
_ f (Xi )(Xi—l — Xi)
f(xi.1)— f(x)

i+1 T N

Newton-Raphson method
_ (%)
f'(x)

i+1 i

Chapter 3: Linear Algebraic Equations and Matrices

System of linear algebraic equations

[AI{X}={B}. Decomposition [A] =[L][U] with [L] and [U] can be obtained as follows:

Using Doolittle decomposition

1 0 0 U, U, U;,
[L]= |21 1 0jU]=|0 Uy, Uy
L, 1, 1 0 0 g
Using Cholesky method
u11 u12 ul3
[AlI=[UT[U]; [U]l=]| 0 U, Uy,
0 0 ugy

Ui =@ — 2 Uy
k=1
i-1
; — 2 Ul
Uy = = for j=i+1..,n
u.
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Using Crout’s method

a11 a12 a13 a14 Ill O O 0 1 ulZ ulS u14
a21 a22 a23 a24 — |21 |22 O 0 O l u23 u24
aSl a32 a33 a34 ISl |32 |33 0 O O 1 u34
a41 a42 a43 a44 |41 |42 |43 |44 O O O 1
Jacobi method Gauss seidel method
b_ i-1 a. noa.
L (k+1) _ M ij (k+1) ij (k)
1 1= . X =— —X; - — X,
Xi(k+1) =— bi — zainEk) A=12..,n. a; 12—1: a; J j;1 ;i :
%i =3 where
k=12,...
i=12,...,n
Power method Nonlinear system: Newton-Raphson method
. 1
v = = AVt Ay A,
My fl,i 0'5(’ - f2,i g
k = 0)1’2! Xl,i+l = Xl,i 2 |J| 2
a, . a,.
f,; 0,; — 0,;
1 1
Xoin = Xy |J|
TG
OX OX
Jl1= 1 2
U er,, e,
0% 0%,

Chapter 4: Curve Fitting

Newton interpolation polynomial

fn(x) = f(X0)+b1(X—XO)
+b2(X—X0)(X—X1)
+'”+bn(x_XO)(X_Xl)"'(X_Xn—l)

where

R S B { C

" Xh =X

Lagrange interpolation polynomial

fn(x)=?2j,|—i (x) F(x ) where L, (X)=1nj X

—X

n—order of interpolation

X—Xj

i
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Inverse Newton interpolation polynomial

P(f)=x+b (f—f)+b,(f—f)(f—f)+b(f—f)(f-f)(f-*,)
et b (F = B)(F = ) (f = 1,.)
n—order of interpolation

Inverse Lagrange interpolation polynomial

P(f)= nZHL(f)x where L (f)= ﬁéf_:%

j=i

n—order of interpolation

Linear Splines Quadratic Splines
s (X)=a +b (Xx—x)+c(x=x)* X <X<X

i i+1

s(x)=f(x)+ fiy = '(x X;) X <X< Xy
Xisg — Fori=12,..,n-1, find

h =X, —X; f+bh +ch?="f
b +2ch =b.
Also given,
c,=0
a =f

|+11

Chapter 5: Numerical Integration

Trapezoidal rule Simpson s 1/3" rule
n-1
;g{f(xo)+22f(xi)+f(xn)} f(x )+4Z f(x)+2 Z f(x, )+f(x)
i=1 i=1,3,5 j=2,4,6
where
X X where
o

X —X
h=-"—2 and n must even segment
n

Simpson’s 3/8 rule

:—[f(x0)+3f(x1)+3f(x)+f(x )], where h=22"%

Chapter 6: Ordinary Differential Equations (I\VP)

Euler’s method

Y=Y+ hf (Xi , yi)
X, =X%+h
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2"% order Runge-Kutta: Heun method

1
Yia =Yi +E(kl + kz)h

Xig =X+ h
where
k.= f(x,Y,)

k, = f(x +h,y, +kh)

2" order Runge-Kutta: Midpoint method
Yia =Y tkh

Xy =X +h

where

k1 = f (Xw yi)

1 1
k,=f(x +=h,y.+=kh
2 (|+2 y|+21)

2"% order Runge-Kutta: Ralston’s method

1
Vi =V +§(kl +2k,)h

X =X+ h
where
kl =f (Xi’ yi)

3 3
k,=f(x+—=h,y. +=kh
2 (| 4 y| 41)

Fourth order Runge-Kutta method

Vi =Y, +%(k1+2k2 +2k; +k,)

Xy =X +h
where
k= (x.Y;)
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Chapter 6: Ordinary Differential Equations (BVP)

Shooting method
Extrapolate estimate for initial slope

G2-G1
z(0)=G1+ D-R1
0) R2—R1( )

where

G1 = First guess at initial slope

G2 = Second guess at initial slope

R1 = Final result at endpoint (using G1)

R2 = Second result at endpoint (using G2)
D = the desired value at the endpoint

Finite Difference method

dzy _ Vi —2Yi+ Yy

dx? AX?
d_y — Yin—Yiu
dx 2AX

AX AX
[1_? Pi j Yia _(2 _szqi ) Yi +[1+7 Pi ) Yin = Aeri

Thomas Algorithm

o=d-¢f, ., a=0
&
pi=—
a;

= by —Ciwi _— :ﬂ

al al

Yi =W, =LY Vs =W,

10




