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INSTRUCTIONS TO CANDIDATES

1 This question paper consists of SIX (6) questions. Answer ALL questions.

2. Use FOUR (4) decimal places in all calculations.

3. All answers to a new question should start on new page.

4 All the calculations and assumptions must be clearly stated.

5 Candidates are not allowed to bring any material other than those allowed by the
invigilator into the examination room.
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1. Scientific calculator.
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QUESTION 1

A system of two equations describing the intersection of a circle and an ellipse are given
as follows
(x—4)*+(y-1)*=25
4(x—1)* +16(y+3)" =64
Find the points of intersection of this two curves using first iteration of Newton-Raphson
method with initial estimates of x(0) =0.5 and y(0) =0.5.
(CO2, P01/11 Marks)

QUESTION 2

A liquid-liquid extraction process conducted in the Electrochemical Materials Laboratory
involved the extraction of nickel (Ni) from the aqueous phase into an organic phase. A

typical set of experimental data from the laboratory is given below

Observation Ni aqueous phase, x Ni organic phase, f(x)

(9/1) (/1)
1 2 8.57
2 2.5 10.23
3 3 12.56
4 3.5 16.22
5 4 18.36
6 4.5 20.68

By assuming that x is the amount of Ni in the aqueous phase and f (x) is the amount of

Ni in organic phase for the above data

I Estimate the Ni in organic phase using second order Lagrange interpolating
polynomial if Ni in aqueous phase is 4.13g/l.

ii. Employ second order Newton inverse interpolation polynomial to determine
the value of Ni in aqueous phase that correspond to 9.3g/l Ni in organic phase.

[Hint: Choose the sequence of the data for your estimates to attain the best possible accuracy]

(CO2, PO2/17 Marks)
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QUESTION 3

Given
f (x) =sin(x) and g(x) =v9+x*
Find j0”1+ f (x)g(x)dx by using

@ Trapezoidal rule

(b) Trapezoidal rule with n=8
(©) Simpson’s 1/3 rule with n=8
(d) Simpson’s 3/8 rule

[ Hint: 7 =3.142]

(CO2, PO1/13 Marks)

QUESTION 4

In the Lotka - Volterra model, under the assumption that the prey, x, learn to avoid the

predators, y , the growth and decay rates due to predation will depend on the independent

variable, t can be represented as

dx b
E:ax—wxy, x(0)=4

dy c
— =T Xy, 0)=2
ot y+(et)z y,  y(0)

where a=3,b=24,c=13andr=8.7. Find x(2) and y(2) using fourth order

Runge-Kutta method with step size, At =2.

(CO2, PO1/17 Marks)
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QUESTION 5

Consider a simple second order differential equation

2
69X 42X oyt
d?  dt

with the boundary conditions x(0)=10, x(10)=560 and h=5. Use linear Shooting
method to solve the problem with first initial guess z(0)=-20 and second initial
guess z(0)=20.

(CO2, PO2/20 Marks)

QUESTION 6

If a cable uniform cross-section is suspended between two supports, the cable will sag
forming a curved called a catenary. If we assume the lowest point on the curve lie on the

y-axis, a distance y, above the origin, the differential equation governing is

2
d zlzlty\/;+%+x3)
a X

dx
with boundary condition y(0)=y,, y(m)=120.
(@ Given a=9,m=20andy,=15. Reduce the above boundary value problem to a

tridiagonal system by using finite difference method with a step size, AX = 4.

(b)  Solve the tridiagonal system in (a) by using Thomas algorithm method.

(CO2, PO2/22 Marks)

END OF QUESTION PAPER
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APPENDIX

Chapter 1: Errors

True Error
E, = true value - approximation value

True percent relative error

true value —approximation value
g = PP <100
true value |

Approximate percent relative error

. - | present approximation — previous approximation |
a | present approximation |

x100

Stopping criterion
Terminate computation when |g,| < &

Chapter 2: Roots of Equations

Bisection method

False-position method
—x — f(Xu)(X| _Xu)
F(x)—f(x,)

r u

Xr — (XI + Xu)
2
Secant method
-y — f(xi)(xi—l _Xi)
T (x) - F(x)

Newton-Raphson method
_ fx)
f'(x)

i1 =N

Chapter 3: Linear Algebraic Equations and Matrices

System of linear algebraic equations

[AI{X}={B}. Decomposition [A] =[L][U] with [L] and [U] can be obtained as follows:

Using Doolittle decomposition

1 0 O U, U, U;
[l—]: I21 10 ;[U]: 0 Uy, Uy
L, 1, 1 0 0 g
Using Cholesky method
ull u12 ul3
[AI=[UTU]; [Ul=| 0 uy, Uy|,
0 0 ugy
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Using Crout’s method

ail a12 a13 a14 Ill 0 0 O l ulZ ul3 u14
a'21 a22 a23 a24 — |21 |22 0 O O 1 u23 u24
a31 a32 a33 a34 |31 |32 |33 o O 0 1 u34
a'41 a'42 a43 a‘44 I4l I42 |43 |44 O 0 O 1
Jacobi method Gauss seidel method
X_(k+l) zi_i a (k+1) i a'lj X (k)
(k+l) b — Za”x(k) ,i 12,...n. I & oy J =i &
J# where
k=12,...
i=12,...,n
Power method Nonlinear system: Newton-Raphson method
1
(k+1) _ (k)
v —m—Av ¢ @_f O’fm
K+l 1i X 2ii X
k=012, X = Xy, 2 :
N
A, a,.
f2i - fli o
KK
X2i+l X2i
A I
ofy  ofy
_| X% 0%
DI=la, o,
oX, ~ OX,

Chapter 4: Curve Fitting

Newton interpolation polynomial

f(X) = F(X)+ F[X, X J(X=X;)
+ %0, X X I (X=X, ) (X = X,)
+ooo+ fX%,.
where

f[X)en X0 X 1= L

Xogoeens X 1= FIX 00 X o0y

o X1 X J(X= %) (X = %)+ (X =%, )

%]

X, =%,

Lagrange interpolation polynomial

n X=X

o g —"

j=0 Xi _Xj

f, () :Zn:Li (x) f (%) where L, (x)

I
o

n—order of interpolation
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Inverse Newton interpolation polynomial

P(f)=xo+b (f—"f)+b,(f—f)(f—f)+b(f—f)(f-1f)(f-f,)
+"'+bn(f - fo)('r - fl)"'(f - fn—l)
n—order of interpolation

Inverse Lagrange interpolation polynomial

P(f)= ZL(f)x where L (f)= HEf :;

j=i

n—order of interpolation

Linear Splines Quadratic Splines
s(X)=a +b(Xx=x)+c(x=%)" X <X<Xx

i i+1

s;(x)=f(x)+ fia = '(x X;) X X< Xy
Xig— Fori=12,..,n-1, find
hi = Xig — X fi +bihi +Cihi2 = fi+1

bi + 2Ci hi = bi+l;
Also given,
c,=0

ai:fi

Chapter 5: Numerical Integration

Trapezoidal rule Simpson’s 1/3" rule

| =— {f(x0)+22f(x)+ f(x, )} f(x )+4Z f(x)+2 Z f(x,)+f(x,)

i=1,35 j=2,4,6

where where

_ X% Xy %o
h= - h=-" - and n must even segment

Simpson’s 3/8 rule
3h

| =~— [f(x0)+3f(x1)+3f(x2)+f(xs)] where h= X2 —%o

Chapter 6: Ordinary Differential Equations (1VP)

Euler’s method

Yii =Y +hf (Xi’ Yi)
Xy =X +h
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2" order Runge-Kutta: Heun method
1
Yia =Y +E(k1 + kz)h
X, =X%+h
where

k1: f(xi’yi)
k, = f(x +h,y +kh)

2" order Runge-Kutta: Midpoint method
Yia =Y +koh

X =X+ h
where
k.= f(x,Y;)

1 1
k,=f(x +=h,y +=kh
2 (|+2 y|+21)

2" order Runge-Kutta: Ralston’s method

1
Yin=Yi +§(k1 +2kz)h

Xy =X%+h
where
k1 = f (Xi’ yi)

3 3
k,=f(x +=h,y, +=kh
2 (| 4 y| 4 1)

Fourth order Runge-Kutta method

Yia =Y, +g(kl+2k2 + 2k, +k,)

X =X+ h
where
k,=f(x.y;)
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Chapter 6: Ordinary Differential Equations (BVP)

Shooting method
Extrapolate estimate for initial slope

z(O):G1+GZ_Gl(D—R1)
R2-R1

where

G1 = First guess at initial slope

G2 = Second guess at initial slope

R1 = Final result at endpoint (using G1)

R2 = Second result at endpoint (using G2)
D = the desired value at the endpoint

Finite Difference method

dzy — yi+l _2yi + yi—l

dx? AX?
dy _ Y~ VYia
dx 2AX

AX AX
(1_7 pijyi—l _(Z_szqi)yi +[1+? pijyh—l = Aeri

Thomas Algorithm
a=d-¢f, , a=d
€
ﬁi =
a;
W, = w . W, = E
Q; a,
Yi =W, _ﬂiyiﬂ ] Yo =W,




