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QUESTION 1
Given the system of linear equations
20x, +12.5x, =76.2-16.4x,
25X +2.2X, —58.4 =-5X,
6X, +3.3X, +8x, -62.11=0.
(1) Transform the above system of linear equations in matrix form, AX =b.

(i1) Decompose matrix A into lower and upper triangular matrix using Crout’s
method.
(i11))  Solve the system of linear equations.

(CO2,P0O1/20 Marks)

QUESTION 2

The growth rate of bacteria, k (mg/L) with respect to oxygen concentration, ¢ (mg/L)

can be modelled by the following equation

2
k — kl]’laXC
c, +¢C’

where C, and k_, are parameters. An experiment to determine the growth rate of

ax
bacteria as a function of oxygen concentration was conducted. The result of the

experiment is in Table 1.

Table 1
¢ (mg/L) 0.5 2.0 4.0 6.5
k (mg/L) 2.2 6.6 4.7 8.1

(1) Use the quadratic splines interpolation to fit the given data.

(i1) Estimate the growth rate of bacteria at oxygen concentration of 3.7mg/L.

(CO2,P0O2/15 Marks)
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QUESTION 3

Figure 1
The electric field, E due to a charged circular disk at a point with a distance z along the

axis of the disk as depicted in Figure 1 is given by

E-2% '|R'2r(zz+r2);dr
de, 1

where the charge density, o =300 x#C/cm®, the permittivity constant,
g, =8.85x107 C?/N-cm’, and the radius of the disk, R =60cm.
(1) Determine the electric field at a point with a distance 5cmusing Trapezoidal rule

method with n=8.

(i1) Calculate the true percent relative error if the exact value of electric field is

1554.1602 N/C.
(CO2, PO1/10 Marks)
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QUESTION 4

The rate of heat flow between two points on a heated cylinder at one end is given by

d_Q_M(loo(L—x)(zo—t)j
dt 100 — xt

where 4 =0.4 cal-cm/s is a constant, A=10 cm” represent the cylinder’s cross-sectional
area, L =20 cm is the length of the rod, Xx=2.5 cm is the distance from the heated end

and Q(0)=0 is the initial condition of heat flow at t, =0. Compute the heat flow for

0<t<6 by using

(1) Second order Runge-Kutta of Heun method with a step size of 3; and

(i1) Fourth order Runge-Kutta method with a step size of 6.

(CO2,P0O2/15 Marks)

QUESTION 5

The position, x of a falling object at time, t is governed by

d°X _ oo, 15.75 dx

dt? 90 dt
with boundary conditions, X(0)=0 and X(20) =500. Use linear shooting method with

2

Euler’s approximation and At =10 to obtain the solution for the above problem with the

first initial guess, z(0) =—10 and second initial guess, z(0) =10.

(CO2,P0O2/18 Marks)
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QUESTION 6

The temperature distribution in a tapered conical cooling fin is described by the
differential equation

2
gxg+2x2(3—uj+ Pu—x=0
X

where U is a temperature, X is an axial distance and P is a nondimensional parameter that

describes the heat and geometry

=E 1+4

P .
k 2m?

The term h represents a heat coefficient, k is thermal conductivity, L is the length or
height of the cone and m represent the slope of the cone wall. The equation has the

boundary conditions u(0)=0and u(1.25)=1.

(1) Let h=0.5,k=0.2, L=1and m=0.5. Use a Finite Difference method with a

step size of 0.25 to reduce the above boundary value problem to a tridiagonal

system.

(i1) Solve the tridiagonal system in (i) using Thomas algorithm method.

(C0O2,P02/22 Marks)

END OF QUESTION PAPER
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APPENDIX
Errors

True Error True percent relative error
E, = true value - approximation value | o

true value — approximation Value|

& = x100

| true value |

Approximate percent relative error Stopping criterion

S : I Terminate computation when |ga| <&
|present approximation — previous approximation |
&= |><100

present approximation

Roots of Equations

Bisection method False-position method
Xr:(x,+xu) X =X - f (X)X —X%,)
2 f(x)—f(x,)
Secant method Newton-Raphson method
Xigg =X — F0)(%s = X) X =X = f,(Xi)
FO6) = () (%)

Linear Algebraic Equations and Matrices

System of linear algebraic equations

[A]{X}={B}. Decomposition [ A]=[L][U ] with [L] and [U ] can be obtained as follows:

Using Doolittle decomposition

1 0 O U, U, U;
[L]= |21 I OiUl=1 0 wu, u,
I3I |32 1 0 0 u33
Using Cholesky method
i—1
U, = la, — > uz
l'Ill u12 u13 " " k=1 .
[A]Z[U]T[U]; [Ul=] 0 u, u,l|, il
a; — Y U
0 0 U33 ij ki ~kj
U =—=*L— forj=i+1,..,n
ij u. ERRRS]
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Using Crout’s method

a‘ll a‘12 al3 a14 Ill 0 0 0 1 u12 u13 14
a21 a22 a23 a24 — |21 |22 O O 0 1 u23 24
a31 a32 a33 a34 |31 |32 |33 O O 0 1 u34
a, a, a; a, |41 |42 |43 I44 0 0 0 1
Jacobi method Gauss seidel method
1 j=n x (kD :E_i ix_(k-v-l) _ Zn: ix_(k)
- 1
Xi(k”) =—/|b - Zainik) JA=12,...n. & o a Shay
% = where
k=12,...
i=12,...,n
Power method Nonlinear system: Newton-Raphson method
v = — AV A, &,
My, fl,i X’I_ fz,i ;I
k = 0:1329 Xl,i+l = Xl,i - s s
N
f al,i _ f éf2,i
2,i 0‘3( Li 03(
Xy =X ! !
2,i+1 2,i |J |
of %
0%,  OX
1= 5 57
of,;  af,;
0%,  OX,
Curve Fitting

Newton interpolation polynomial

f(X)=F(x)+ F[X X 1(X—X,)
+ £ [ %95 X, %, J(X— X )(X—X,)

oo F[Xgeeen X X JOX= X)X = X) (X=X )
where

PRI 0 Y ol 95 SSLY

- X, =%,

Lagrange interpolation polynomial

[
j=0 Xi_Xj

J#

fL(0) =D L (x) £ (x) where L (x) =

Iy
o

n—order of interpolation
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Inverse Newton interpolation polynomial

P(F)=x,+b, (f—f)+b, (f—f,)(f—f)+b,(f—f)(f-f)(f-*)
ot b, (F = f)(F = ) (F = £,)

n —order of interpolation

Inverse Lagrange interpolation polynomial

P(f)—ZL(f)X where L;(f)= Hgf :;

i=0
J#1

n —order of interpolation

Linear Splines Quadratic Splines

s ()= f(x)+ fi = '(x X) X <x<x, s;(X)=a +h(X=%x)+¢(x=%)" X <X<X,
Xiy — Fori=1,2,..,n—1, find

h =X, —%; fi+bh +ch? =,

b, +2¢h =b.;

Also given,

c,=0

a =f

Numerical Integration

Trapezoidal rule Simpson’s 1/37 rule
h n-1
EE[T(XOHZZ f(x)+ f(xn)} f(x0)+4 Z f(x)+2 Z f(x)+f(x))
i=1 i=1,3,5 j=2,4,6
where where
X, =X, X, — X
h= h=-—"—2 and n must even segment

n n

Simpson’s 3/8 rule

| = h[f(x )+3f(x)+3f(X )+f(X )] where hzu

Ordinary Differential Equations (IVP)

Euler’s method

Yia =Yt hf (Xi9 yi)
X, =X%+h
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2"4 order Runge-Kutta: Heun method
|

Yia =Y +E(k1 + kz)h

Xig =%+ h

where

k1 = f(Xi,yi)
k,=f(x +h,y, +kh)

2"4 order Runge-Kutta: Midpoint method
Vi = ¥i +Kh
Xig =%+ h
where
k1 = f (%> ¥i)

1 1
k,=f(x +=h,y.+—=kh
2 (|+2 y|+21)

2"4 order Runge-Kutta: Ralston’s method

1
Yin =i +§(k1 +2k2)h

X, =X +h
where
k1 = f (Xia Yi)

3 3
k,=f(x +=h,y. +=kh
2 (I 4 yl 41)

Fourth order Runge-Kutta method

Yii =Y, +%(k1 +2k, + 2k, + k4)

X, =X +h

where

ko= f(x.y;)

k= f[x+ h,yi+%klh]
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Ordinary Differential Equations (BVP)

Shooting method
Extrapolate estimate for initial slope

G2-Gl
2(0)=Gl+ D-RI
(0) TR )

where

G1 = First guess at initial slope

G2 = Second guess at initial slope

R1 = Final result at endpoint (using G1)

R2 = Second result at endpoint (using G2)
D = the desired value at the endpoint

Finite Difference method

d’y _ Yin —2Yi +Yi,

dx? AX?
ﬂ — Yin —Yiu
dx 2AX

AX AX
(1_7 pijyil —(Z—szqi)yi +(1+7 pijym = szri

Thomas Algorithm
a=d,-¢B., , a=d
&
ﬂi -
a;
W = b- —GWi, W _ﬂ
i 5 1=
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