## 10. Ordinary Differential Equations: Boundary Value Problem

Norhayati Rosli,
Applied \& Industrial Mathematics Research Group,
Faculty of Industrial Sciences \& Technology (FIST),
Universiti Malaysia Pahang,
Lebuhraya Tun Razak,
26300 Gambang, Kuantan,
Pahang, Malaysia
E-mail: norhayati@ump.edu.my

### 10.1 Exercises

## Shooting Method

Exercise 10.1 Approximate the solution of the following boundary value problems (BVP) by using Shooting method.
i. $y^{\prime \prime}+y^{\prime}-2 y=2\left(x^{2}-4 x+\sin (x)\right), y(0)=-0.6, y(1)=-0.8095, h=0.2$.

Let the first guess $z_{0}=0.4$ and the second guess $z_{0}=1.0$.
ii. $y^{\prime \prime}+y=0, y(0)=1, y(\pi)=0, h=\frac{\pi}{4}$.

Let the first guess $z_{0}=1.5$ and the second guess $z_{0}=2.0$.
iii. $y^{\prime \prime}-x=\left(1-\frac{x}{5}\right) y, y(0)=2.0, y(3)=-1.0, h=0.5$.

Let the first guess $z_{0}=3.0$ and the second guess $z_{0}=-3.0$.
iv. $y^{\prime \prime}-y^{\prime}-2 y-\cos (x)=0, y(0)=-0.3, y\left(\frac{\pi}{2}\right)=-0.1, h=\frac{\pi}{4}$.

Let the first guess $z_{0}=3.0$ and the second guess $z_{0}=-3.0$.
v. $y^{\prime \prime}-\frac{y^{\prime}}{x}=\frac{3}{x^{2}} y+\frac{\ln x}{x}-1, y(1)=y(3)=0, h=0.5$.

Let the first guess $z_{0}=2.0$ and the second guess $z_{0}=-2.0$.
vi. $y^{\prime \prime}+4 y-\cos (x)=0, y(0)=0, y\left(\frac{\pi}{4}\right)=0, h=\frac{\pi}{20}$

Let the first guess $z_{0}=0.5$ and the second guess $z_{0}=-0.5$.

Exercise 10.2 The position, $x$ of a falling object at time, $t$ is governed by

$$
2 \frac{d^{2} x}{d t^{2}}=9.8-2 \frac{d x}{d t}
$$

with boundary conditions, $x(0)=0$ and $x(20)=800$. Approximate the solution of the psoition $x$ for each interior nodes by using a linear Shooting method. Use the first initial guess, $z_{0}=5$ and second initial guess, $z_{0}=-5$ and $h=5$.

Exercise 10.3 A boundary value problem for a temperature distribution, $T$ of a non-insulated uniform rod is given by

$$
\frac{d^{2} T}{d x^{2}}+k T=0, \quad T(0)=0, \quad T(20)=10
$$

Suppose $k=0.75$, approximate the interior temperature distribution, $T$ using the Shooting method with a step size, $h=4$.

Exercise 10.4 A simple supported beam at $x_{0}=0$ and $x_{n}=L$ with a uniform load $w$ and the vertical deflection $v(x)$ is described by the boundary value problem

$$
\frac{d^{2} v}{d x^{2}}=\left(\frac{x-L}{3 E I}\right) w x, \quad v(0)=5, \quad v(L)=100
$$

where $L$ is the length of the beam, $E$ represents the Young's modulus of the material from which the beam is fabricated and $I$ is the second moment of area of the beam's cross-section. Suppose $L=15 \mathrm{~m}, E=210 \mathrm{kN} / \mathrm{m}^{2}, I=370.5 \mathrm{~m}^{2}$ and $w=9.8 \mathrm{kN} / \mathrm{m}$. Use the Shooting method to approximate the vertical deflection, $v(x)$ with the step size, $h=3$, the first guess, $z_{0}=10$ and the second guess, $z_{0}=5$.

Exercise 10.5 The Van der Pol equation

$$
y^{\prime \prime}-\gamma\left(y^{2}-1\right) y^{\prime}+y=0, \quad \gamma>0
$$

governs the flow of current in a vacuum tube with three internal elements. Let $\gamma=\frac{1}{2}, y(0)=0$ and $y(2)=1$. Approximate the solution of $y(t)$, for $t=0.2 i$, where $1 \leq i \leq 9$.

### 10.1.1 Finite Difference Method

Exercise 10.6 Approximate the following boundary value problems using Finite difference method.
i. $y^{\prime \prime}+x y^{\prime}+x^{2} y=2 x^{3}, \quad y(0)=1, \quad y(1)=-1, \quad h=0.2$.
ii. $y^{\prime \prime}-x y^{\prime}=-3 y+11 x, \quad y(0)=1, \quad y(2)=-1, \quad h=0.4$.
iii. $y^{\prime \prime}-y^{\prime}-2 y=2 \cos (x), \quad y(0)=-0.3, \quad y(1)=-0.1, \quad h=0.2$
iv. $y^{\prime \prime}-\frac{y^{\prime}}{x}=\frac{3}{x^{2}} y+\frac{\ln x}{x}-1, \quad y(1)=y(2)=0, \quad n=5$
v. $y^{\prime \prime}+4 y-\cos (x)=0, \quad y(0)=0, \quad y\left(\frac{\pi}{4}\right)=0, h=\frac{\pi}{20}$

Exercise 10.7 A heated rod with a uniform heat source can be modelled by the Poisson equation

$$
\frac{d^{2} \theta}{d x^{2}}=-g(x)
$$

where $\theta$ is a temperature distribution in the direction of heat flow, $x$ denotes the local position with respect to $x$-coordinate and $g(x)$ is a heat source. Given $g(x)=28$ and the boundary conditions $\theta(0)=50$ and $\theta(20)=400$, approximate the temperature distribution using the Finite Difference method. Use a step size, $\Delta x=5$.

Exercise 10.8 A steady-state one-dimensional heat flow in a circular rod with internal heat source $H$ over the range $1 \leq x \leq 2$ can be modelled by

$$
x \frac{d^{2} \theta}{d x^{2}}+\frac{d \theta}{d x}=H
$$

with boundary conditions $\theta(1)=0$ and $\theta(2)=20$. Use the Finite Difference method to approximate the heat flow at the local position, $x$ if the internal heat source is $20 x \mathrm{~K} / \mathrm{m}^{2}$ and $\Delta x=0.2$.

Exercise 10.9 Consider a cylinder of radius, $R=2 \mathrm{~m}$, with uniformly distributed heat sources and constant thermal conductivity, $k$. If cylinder is sufficiently long that the temperature, $\theta$ may be considered a function of radius only, the appropriate differential equation is

$$
x \frac{d^{2} \theta}{d x^{2}}+\frac{d \theta}{d x}+x \frac{Q}{k}=0
$$

where $Q$ is heat generated per unit volume. The boundary conditions are $\theta(1)=10$ and $\theta(R)=215$ and heat generated equals heat lost at the surface such that

$$
Q \pi R^{2} L=-2 \pi k R L
$$

where $L=1 \mathrm{~m}$ is a length of the cylinder. Suppose $k=2$ and a step size $\Delta x=0.1$, approximate the temperature distribution via Finite Difference method.

Exercise 10.10 If a cable uniform cross-section is suspended between two supports, the cable will sag forming a curved called a catenary. If we assume the lowest point on the curve lie on the $y$-axis, the governing differential equation is

$$
\frac{d^{2} y}{d x^{2}}=\frac{3 a}{4} x-a\left(x-\frac{L}{4}\right)
$$

with boundary conditions $y(0)=0$ and $y(L)=0$. Given a scaling parameter, $a=2$, a cable length, $L=20$ and $\Delta x=4$, approximate the solution of the above BVP using the Finite Difference method.

References 1. Chapra, C. S. \& Canale, R. P. Numerical Methods for Engineers, Sixth Edition, McGraw-Hill, 2010.

