9. Ordinary Differential Equations: Initial Value Problem

Norhayati Rosli,
Applied \& Industrial Mathematics Research Group,
Faculty of Industrial Sciences \& Technology (FIST),
Universiti Malaysia Pahang,
Lebuhraya Tun Razak,
26300 Gambang, Kuantan,
Pahang, Malaysia
E-mail-norhayati@ump.edu.my

9.1 Exercises

Euler Method

Exercise 9.1 Estimate the following initial value problems by using Euler's method. Use a step size of $h=0.5$.
i. $y^{\prime}=y(\sin (t))^{5}, \quad 0 \leq t \leq 2, \quad y(0)=1$
ii. $y^{\prime}=y x+\exp (-x y), \quad 0 \leq x \leq 2, \quad y(0)=1$
iii. $y^{\prime}=y+t^{2} \sin (y), \quad 0 \leq t \leq 3, \quad y(0)=1.5$
iv. $y^{\prime}=0.4\left(1-\frac{y}{3.5}\right) y, \quad 0 \leq x \leq 5, \quad y(0)=0.031$
v. $y^{\prime}=-\exp \left(\frac{10 y}{573}\right), \quad 0 \leq x \leq 2, \quad y(0)=1$

Exercise 9.2 The open loop for the speed, w, to a voltage input of 20 V is
$(0.2) \frac{d w}{d t}=10-0.6 w$.
where t is a time measured in hour. If the initial speed is zero, calculate the speed at $t=1.0$ with a step size of 0.25 by using Euler method.

Exercise 9.3 Let $x(t)$ be the concentration of the microbial Clostridium Acetobutylicum P262 in batch fermentation process at time t (measured in hours). If the average of birth rate $\mu_{\max }$ is constant and the average of death rate κ is proportional to the cell mass, then the cell growth concentration rate of Clostridium Acetobutylicum P262 can be expressed by logistic equation

$$
d x(t)=\left(\mu_{\max }-\kappa\right) x(t) d t
$$

where $\kappa=\frac{\mu_{\max }}{\eta_{\max }} x(t)$ and $\eta_{\max }$ is a carrying capacity of the microbe. Suppose $x(0)=0.5 \mathrm{~g} / \mathrm{L}$, $\mu_{\max }=0.2$ and $\eta_{\max }=2.88$. Find the concentration of Clostridium Acetobutylicum P262 in fermentation process after 3 hours by using a Euler method. Use a step size of 0.5.

RK2 Method

Exercise 9.4 Estimate the initial value problems of Exercise 9.1 in subsection 9.1 by using:
i. RK2 of Heun method
ii. RK2 of midpoint method
iii. RK2 of Ralston method

Exercise 9.5 An inductor and a linear resistor of resistance are connected in series with a DC power source and a switch. The switch is closed at initial time $t_{0}=0$. The mathematical equation of the current I of the circuit is

$$
2 \frac{d I}{d t}+I=50
$$

Use a midpoint method with a time step of 0.25 s and zero initial current to determine the current at $t=1.0 \mathrm{~s}$.

Exercise 9.6 A spherical water tank of a radius $R_{1}=15 \mathrm{~m}$ is emptied through a small circular hole of $R_{2}=0.5 \mathrm{~m}$. The instantaneous water level, H in the tank that is measured from the bottom of the tank can be determined by numerically integrate the following ODE

$$
\frac{d H}{d t}=-\frac{5 R_{2}^{2} \sqrt{2 g H}}{2 H R_{1}-H^{2}}
$$

The term $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ represent the gravity force. The water level $H=9 \mathrm{~m}$ at initial time $t_{0}=0 \mathrm{~s}$. Determine the level of water in the tank after $t=9.0 \mathrm{~s}$ by using RK2 of Ralston method with a time step of 0.5 s .

Exercise 9.7 Determine the concentration of Clostridium Acetobutylicum P262 in Exercise 9.3 of subsection 9.1 by using Heun method.

RK4 Method

Exercise 9.8 Use RK4 method with a step size of 0.5 to approximate the solutions of the following initial value problems.
i. $y^{\prime}=y t-\sin ^{2} y, \quad 0 \leq t \leq 2, \quad y(0)=1$

9.1 Exercises

ii. $y^{\prime}=1+\frac{y}{2 t^{2}}, \quad 1 \leq t \leq 2, \quad y(1)=2$
iii. $\frac{y^{\prime}}{\sqrt{y}}=1+2 x y, \quad 0 \leq x \leq 1, \quad y(0)=0.5$
iv. $y^{\prime}=x\left(y-x^{3}\right), \quad 0 \leq x \leq 3, \quad y(0)=1$
v. $y^{\prime}=\ln (2 y)-x, \quad 0 \leq x \leq 2, \quad y(0)=2$

Exercise 9.9 The rate of heat flow between two points on a heated cylinder at one end is given by

$$
\frac{d Q}{d t}=\lambda A\left(\frac{100(L-x)(20-t)}{100-x t}\right)
$$

where $\lambda=0.4 \mathrm{cal} \cdot \mathrm{cm} / \mathrm{s}$ is a constant, $A=10 \mathrm{~cm}$ represent the cylinder's cross-sectional area, $L=20 \mathrm{~cm}$ is the length of the rod, $x=2.5 \mathrm{~cm}$ is the distance from the heated end and $Q(0)=0$ is the initial condition of heat flow at $t_{0}=0$. Compute the heat flow for $0 \leq t \leq 9$ by using fourth order Runge-Kutta method with a step size of 3 .

Exercise 9.10 Find the concentration of Clostridium Acetobutylicum P262 in Exercise 9.3 of subsection 9.1 by using RK4 method.

System of ODEs

Exercise 9.11 Solve the system

$$
\begin{aligned}
& \frac{d y}{d x}=\sin (x)+\cos (y)+\sin (z) \\
& \frac{d z}{d x}=\cos (x)+\sin (z)
\end{aligned}
$$

with initial condition of $y(0)=2.5689$ and $z(0)=1.5689$ over the interval $0 \leq x \leq 2$ using
i. Euler method
ii. Fourth order Runge-Kutta method

Use a step size of 0.5 .

Exercise 9.12 Estimate the solution of the system

$$
\begin{aligned}
x^{\prime} & =2 \exp (x)+3 \sin (y), \quad x(0)=0.1252 \\
y^{\prime} & =\cos (x y), \quad y(0)=0.9234
\end{aligned}
$$

over the interval $0 \leq t \leq 1$ for a step size of 0.5 by using
i. Euler method
ii. Fourth order Runge-Kutta method

Exercise 9.13 In the Lotka-Volterra model, under the assumption that the prey, x, learn to avoid the predators, y, the growth and decay rates due to predation will depend on the independent
variable, t can be represented as

$$
\begin{array}{ll}
\frac{d x}{d t}=a x-b x y, & x(0)=4 \\
\frac{d y}{d t}=-c y+r x y, & y(0)=2
\end{array}
$$

where $a=0.8, b=0.5, c=0.5$ and $r=2.0$. Let a step size $\Delta t=0.5$, find $x(2)$ and $y(2)$ using Euler method.

Exercise 9.14 Two cylindrical water tanks are connected. Initially there are 10 litres of water in the top tank and 5 litres in the bottom tank. The valve between the two tanks are opened at initial time, $t_{0}=0$. The flow rate through each of these valves is proportional to the volume of the water in the tank. Volume of water in both tanks (v_{1}-volume of the water in the top tank, v_{2}-volume of water in the bottom tank) can be described by a system of two first order ODEs

$$
\begin{aligned}
\frac{d v_{1}}{d t} & =-0.8 v_{1} \\
\frac{d v_{2}}{d t} & =0.1 v_{1}+\cosh t+2.5 v_{2}
\end{aligned}
$$

Numerically integrate $v_{1}(3)$ and $v_{2}(3)$ by using RK4 method. Use a step size of 0.5 .

References 1. Chapra, C. S. \& Canale, R. P. Numerical Methods for Engineers, Sixth Edition, McGraw-Hill, 2010.

