# 9. Ordinary Differential Equations: Initial Value Problem

Norhayati Rosli, Applied & Industrial Mathematics Research Group, Faculty of Industrial Sciences & Technology (FIST), Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia E-mail–norhayati@ump.edu.my

# 9.1 Exercises

# **Euler Method**

**Exercise 9.1** Estimate the following initial value problems by using Euler's method. Use a step size of h = 0.5. i.  $y' = y(sin(t))^5$ ,  $0 \le t \le 2$ , y(0) = 1ii.  $y' = yx + \exp(-xy)$ ,  $0 \le x \le 2$ , y(0) = 1iii.  $y' = y + t^2 \sin(y)$ ,  $0 \le t \le 3$ , y(0) = 1.5iv.  $y' = 0.4 \left(1 - \frac{y}{3.5}\right)y$ ,  $0 \le x \le 5$ , y(0) = 0.031v.  $y' = -\exp\left(\frac{10y}{573}\right)$ ,  $0 \le x \le 2$ , y(0) = 1

**Exercise 9.2** The open loop for the speed, *w*, to a voltage input of 20*V* is

$$(0.2)\frac{dw}{dt} = 10 - 0.6w$$

where t is a time measured in hour. If the initial speed is zero, calculate the speed at t = 1.0 with a step size of 0.25 by using Euler method.



**Exercise 9.3** Let x(t) be the concentration of the microbial *Clostridium Acetobutylicum* P262 in batch fermentation process at time *t* (measured in hours). If the average of birth rate  $\mu_{max}$  is constant and the average of death rate  $\kappa$  is proportional to the cell mass, then the cell growth concentration rate of *Clostridium Acetobutylicum* P262 can be expressed by logistic equation

$$dx(t) = \left(\mu_{max} - \kappa\right) x(t) dt$$

where  $\kappa = \frac{\mu_{max}}{\eta_{max}} x(t)$  and  $\eta_{max}$  is a carrying capacity of the microbe. Suppose x(0) = 0.5 g/L,  $\mu_{max} = 0.2$  and  $\eta_{max} = 2.88$ . Find the concentration of *Clostridium Acetobutylicum* P262 in fermentation process after 3 hours by using a Euler method. Use a step size of 0.5.

#### **RK2 Method**

Exercise 9.4 Estimate the initial value problems of Exercise 9.1 in subsection 9.1 by using:i. RK2 of Heun method

- ii. RK2 of midpoint method
- iii. RK2 of Ralston method

**Exercise 9.5** An inductor and a linear resistor of resistance are connected in series with a DC power source and a switch. The switch is closed at initial time  $t_0 = 0$ . The mathematical equation of the current *I* of the circuit is

$$2\frac{dI}{dt} + I = 50$$

Use a midpoint method with a time step of 0.25 s and zero initial current to determine the current at t = 1.0 s.

**Exercise 9.6** A spherical water tank of a radius  $R_1 = 15$  m is emptied through a small circular hole of  $R_2 = 0.5$  m. The instantaneous water level, *H* in the tank that is measured from the bottom of the tank can be determined by numerically integrate the following ODE

$$\frac{dH}{dt} = -\frac{5R_2^2\sqrt{2gH}}{2HR_1 - H^2}$$

The term  $g = 9.81 \text{ m/s}^2$  represent the gravity force. The water level H = 9 m at initial time  $t_0 = 0$  s. Determine the level of water in the tank after t = 9.0 s by using RK2 of Ralston method with a time step of 0.5 s.

**Exercise 9.7** Determine the concentration of *Clostridium Acetobutylicum* P262 in Exercise 9.3 of subsection 9.1 by using Heun method.

## **RK4 Method**

**Exercise 9.8** Use RK4 method with a step size of 0.5 to approximate the solutions of the following initial value problems.

i.  $y' = yt - \sin^2 y$ ,  $0 \le t \le 2$ , y(0) = 1



| <b>ii.</b> $y' = 1 + \frac{y}{2t^2}$ ,        | $1 \le t \le 2,  y$ | (1) = 2    |
|-----------------------------------------------|---------------------|------------|
| <b>iii.</b> $\frac{y'}{\sqrt{y}} = 1 + 2xy$ , | $0 \le x \le 1,$    | y(0) = 0.5 |
| <b>iv.</b> $y' = x(y - x^3)$ ,                | $0 \le x \le 3,$    | y(0) = 1   |
| $\mathbf{v.} \ y' = \ln(2y) - x,$             | $0 \le x \le 2,$    | y(0) = 2   |

**Exercise 9.9** The rate of heat flow between two points on a heated cylinder at one end is given by

$$\frac{dQ}{dt} = \lambda A \left( \frac{100(L-x)(20-t)}{100-xt} \right)$$

where  $\lambda = 0.4 \text{ cal} \cdot \text{cm/s}$  is a constant, A = 10 cm represent the cylinder's cross-sectional area, L = 20 cm is the length of the rod, x = 2.5 cm is the distance from the heated end and Q(0) = 0 is the initial condition of heat flow at  $t_0 = 0$ . Compute the heat flow for  $0 \le t \le 9$  by using fourth order Runge-Kutta method with a step size of 3.

**Exercise 9.10** Find the concentration of *Clostridium Acetobutylicum* P262 in Exercise 9.3 of subsection 9.1 by using RK4 method.

# System of ODEs

Exercise 9.11 Solve the system

$$\frac{dy}{dx} = \sin(x) + \cos(y) + \sin(z)$$
$$\frac{dz}{dx} = \cos(x) + \sin(z)$$

with initial condition of y(0) = 2.5689 and z(0) = 1.5689 over the interval  $0 \le x \le 2$  using **i.** Euler method

**ii.** Fourth order Runge–Kutta method Use a step size of 0.5.

**Exercise 9.12** Estimate the solution of the system

$$\begin{aligned} x' &= 2\exp(x) + 3\sin(y), \qquad x(0) = 0.1252 \\ y' &= \cos(xy), \qquad y(0) = 0.9234 \end{aligned}$$

over the interval  $0 \le t \le 1$  for a step size of 0.5 by using i. Euler method ii. Fourth order Runge–Kutta method

**Exercise 9.13** In the Lotka–Volterra model, under the assumption that the prey, x, learn to avoid the predators, y, the growth and decay rates due to predation will depend on the independent



variable, t can be represented as

$$\frac{dx}{dt} = ax - bxy, \qquad x(0) = 4$$
$$\frac{dy}{dt} = -cy + rxy, \qquad y(0) = 2$$

where a = 0.8, b = 0.5, c = 0.5 and r = 2.0. Let a step size  $\Delta t = 0.5$ , find x(2) and y(2) using Euler method.

**Exercise 9.14** Two cylindrical water tanks are connected. Initially there are 10 litres of water in the top tank and 5 litres in the bottom tank. The valve between the two tanks are opened at initial time,  $t_0 = 0$ . The flow rate through each of these valves is proportional to the volume of the water in the tank. Volume of water in both tanks ( $v_1$ -volume of the water in the top tank,  $v_2$ -volume of water in the bottom tank) can be described by a system of two first order ODEs

$$\frac{dv_1}{dt} = -0.8v_1$$
$$\frac{dv_2}{dt} = 0.1v_1 + \cosh t + 2.5v_2$$

Numerically integrate  $v_1(3)$  and  $v_2(3)$  by using RK4 method. Use a step size of 0.5.

**References** 1. Chapra, C. S. & Canale, R. P. Numerical Methods for Engineers, Sixth Edition, McGraw–Hill, 2010.

