

Numerical Methods Numerical Integrations

Norhayati Rosli & Rozieana Khairuddin Faculty of Industrial Sciences and Technology norhayati@ump.edu.my & rozieana@ump.edu.my

Description

AIMS

This chapter is aimed to solve the integration of the given functions by using numerical integration methods.

EXPECTED OUTCOMES

1. Students should be able to numerically integrate the integration by using Trapezoidal rule and Simpson's rule

REFERENCES

- 1. Norhayati Rosli, Nadirah Mohd Nasir, Mohd Zuki Salleh, Rozieana Khairuddin, Nurfatihah Mohamad Hanafi, Noraziah Adzhar. *Numerical Methods,* Second Edition, UMP, 2017 (Internal use)
- 2. Chapra, C. S. & Canale, R. P. *Numerical Methods for Engineers*, Sixth Edition, McGraw–Hill, 2010.

Content

Introduction

2

- Numerical Integration Methods
 - 2.1 Trapezoidal Rule
 - 2.2 Simpson's Rule
 - 2.2.1 Simpson's 1/3rd Rule
 - 2.2.2 Simpson's 3/8 Rule
 - 2.3 Simpson's 1/3rd Rule and 3/8 Rule in Tandem

INTRODUCTION

- Integration is a process of measuring the area under a function f(x) which is plotted on a graph
- Graphical illustration of measuring the area under the curve is depicted in Figure 1.

Figure 1: Graphical illustration of measuring the area under the curve

INTRODUCTION (Cont.)

Mathematically, the integration of f(x) can be formulated as

$$I = \int_{a}^{b} f(x) dx \qquad (1)$$

- Equation (1) represents the integral of the function f(x) with respect to the independent variable x, that is evaluated between the limits of x = a to x = b.
- Integration (1) in most of the cases cannot be solved analytically due to the complexity form of the function, f(x).
- Thus requires **numerical integration methods** to solve the integration (1).

INTRODUCTION (Cont.)

Numerical Integration Methods

NUMERICAL INTEGRATION METHODS

Trapezoidal Rule

- Trapezoidal rule is based on approximating the integrand, f(x) by a first order polynomial.
- Geometrically, it is equivalent to approximate the area of the trapezoid under the straight line connecting f(a) and f(b) as indicated in **Figure 2.**

approximation of the integral via Trapezoidal rule

Single Trapezoidal rule: Formula

From **Figure 2**, the estimated integral of equation (1) can be represented as

 $I \cong$ width \times average height

 $=(b-a)\times\left(\frac{f(a)+f(b)}{2}\right) \qquad (2)$

Equation (2) can be written as:

$$I = \frac{h}{2} (f(a) + f(b))$$
 Single application of Trapezoidal rule

Example 1

Evaluate

$$\int_{0}^{1} \left(\sqrt{\sin^3(x) + 1} \right) dx$$

by using Trapezoidal rule.

Solution

$$b = 1, a = 0 \text{ and } h = b - a = 1 - 0 = 1.$$

$$\int_0^1 \left(\sqrt{\sin^3(x)} + 1 \right) dx \cong \frac{1 - 0}{2} \left[f(0) + f(1) \right]$$

$$= 0.5 (1 + 1.2633)$$

$$= 1.1317$$

Therefore, the numerical integration of Example 1 is 1.1317

Composite Trapezoidal Rule

- The accuracy of single application of Trapezoidal rule can be improved by dividing the interval [a, b] into a number of finer segments.
- The integral for the entire intervals is computed by adding the areas of the individual segment.
- The method is known as Composite Trapezoidal rule.
- The method is developed based on first order polynomial by dividing the number of segments, n into equally step size, h.

Graphical Representation of Composite Trapezoidal Rule

Figure 3: Graphical representation of the approximation of the integral by Composite Trapezoidal rule

Composite Trapezoidal rule: Formula

Suppose we have n + 1 equally spaced points, $x_0, x_1, x_2, \dots, x_n$ with n number of strips of equal width. The step size, h is computed as

The integration of equation (1) is written as

$$I = \int_{x_0}^{x_1} f(x) dx + \int_{x_1}^{x_2} f(x) dx + \dots + \int_{x_{n-1}}^{x_n} f(x) dx \quad (3)$$

Composite Trapezoidal rule: Formula

Substituting the single application trapezoidal rule into (3) yields

$$I \cong h\left(\frac{f(x_0) + f(x_1)}{2}\right) + h\left(\frac{f(x_1) + f(x_2)}{2}\right) + \dots + h\left(\frac{f(x_{n-1}) + f(x_n)}{2}\right)$$
(4)

Grouping the terms of equation (4) gives

$$I = \frac{h}{2} \left[f(x_0) + f\left(x_n\right) + 2\sum_{i=1}^{n-1} f(x_i) \right) \right]$$
 Composite
Trapezoidal
Rule Formula

Universiti Malaysia PAHANG

Example 2

Evaluate

$$\int_{0}^{1} \left(\sqrt{\sin^3(x)+1}\right) dx$$

by using trapezoidal rule with n = 10.

Solution

Composite trapezoidal rule is used, since the number of strips , n > 1.

$$b = 1, a = 0, n = 10$$

 $h = \frac{b-a}{n} = \frac{1-0}{10} = 0.1$ Step size, h

Solution (Cont.)

For each value of x, find f(x)

x	f(x)
0	1
0.1	1.0005
0.2	1.0039
0.3	1.0128
0.4	1.0291
0.5	1.0537
0.6	1.0863
0.7	1.1258
0.8	1.1701
0.9	1.2168
1.0	1.2633

 $\int \left(\sqrt{\sin^3(x) + 1}\right) dx$

Solution (Cont.)

Apply a composite trapezoidal rule formula

$$\approx \frac{0.1}{2} \left(1 + 1.2633 + 2 \left(1.0005 + 1.0039 + \ldots + 1.2168 \right) \right)$$

= $\frac{0.1}{2} \left(2.2633 + 2 \left(9.7012 \right) \right)$
= 1.0833

Therefore, the numerical integration of Example 2 is 1.0833

 $\int \left(\sqrt{\sin^3(x)+1}\right) dx$

Solution (Cont.)

Apply a composite trapezoidal rule formula

$$\approx \frac{0.1}{2} \left(1 + 1.2633 + 2 \left(1.0005 + 1.0039 + \ldots + 1.2168 \right) \right)$$

= $\frac{0.1}{2} \left(2.2633 + 2 \left(9.7012 \right) \right)$
= 1.0833

Therefore, the numerical integration of Example 2 is 1.0833

Simpson's Rule

- Higher order polynomial can be used to obtain more accurate estimate of the integral. If there is a mid point in between f(a) and f(b), then
- The three points can be connected with a second order polynomial
- The four points can be connected with a third order polynomial
- The numerical integration method that based on second and third order polynomials are called Simpson's rule.

Simpson's 1/3rd Rule

- Integrand is approximated by a second order polynomial
- Three points are connected with a parabola
- The integrand in equation (1) is substituted with a second order interpolation polynomial of

$$I \cong \int_{a}^{b} f_{2}(x) dx$$

where $f_2(x)$ is second order Lagrange interpolation polynomial.

Single Application Simpson's 1/3rd Rule

Suppose $a = x_0$ and $b = x_n$, the integral of (1) can be written as

$$I = \int \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] dx \quad (5)$$

By integrating (5) and with some algebraic manipulation yields

$$I = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

Single application
Simpson's 1/3rd rule

where $h = \frac{b-a}{2}$.

Composite Simpson's 1/3rd Rule

- The accuracy of single application of Simpson's 1/3rd rule can be improved by dividing the interval into n number of strips of equal width
- The method is known as Composite Simpson's 1/3rd rule.
- The total integral can be expressed as

$$I = \int_{x_0}^{x_2} f(x) dx + \int_{x_2}^{x_4} f(x) dx + \ldots + \int_{x_{n-2}}^{x_n} f(x) dx$$
(6)

The individual integral of (6) is substituted by single application of Simpson's 1/3rd rule such that

$$I = \frac{h}{3} \Big[\Big(f(x_0) + 4f(x_1) + f(x_2) \Big) + \Big(f(x_2) + 4f(x_3) + f(x_4) \Big) \\ + \dots + \Big(f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \Big) \Big]$$
(7)

Composite Simpson's 1/3rd Rule (Cont.)

By combining and rearranging terms of equation (7) gives

$$I = \frac{h}{3} \left[\left(f(x_0) + f(x_n) + 4 \sum_{i=1,3,5,..}^{n-1} f(x_i) + 2 \sum_{i=2,4,6,..}^{n-2} f(x_i) \right) \right]$$
 Composite Simpson's 1/3rd Rule

Note: The number of segments, n should be an even number

Universiti Malaysia PAHANG

Example 3

Evaluate

$$\int_{0}^{1} \left(\sqrt{\sin^3(x) + 1}\right) dx$$

by using Simpson's rule.

Solution

Single application of Simpson's 1/3rd rule is used, since no information of step size or number of strips is provided.

Solution (Cont.)

For each value of x , find $f(x)$		
x	f(x)	
0	1.0	
0.5	1.0537	
1.0	1.2633	

$$I \cong \frac{0.5}{3} \left[1 + 4 \left(1.0537 \right) + 1.2633 \right] = 1.0793$$

Therefore, the numerical integration is 1.0793

Universiti Malaysia PAHANG

Example 3

Evaluate

$$\int_{0}^{1} \left(\sqrt{\sin^3(x) + 1}\right) dx$$

by using Simpson's rule with n = 10.

Solution

Single application of Simpson's 1/3rd rule is used, since no information of step size or number of strips is provided.

Solution (Cont.)

For each value of x, find f(x)

n	x	$f(x_0), f(x_n)$	$f(x_{i_{even}})$	$f(x_{i_{odd}})$
0	0	1		
1	0.1			1.0005
2	0.2		1.0039	
3	0.3			1.0128
4	0.4		1.0291	
5	0.5			1.0537
6	0.6		1.0863	
7	0.7			1.1258
8	0.8		1.1701	
9	0.9			1.2168
10	1.0	1.2633		
Т	otal	2.2633	4.2894	5.4096

Communitising Technology

Solution (Cont.)

Therefore, the numerical integration is 1.0827

Simpson's 3/8 Rule

- Integrand is approximated by a third order Lagrange polynomial
- Require four points of data with number of intervals n = 3.
- The integrand in equation (1) is substituted with a third order Lagrange polynomial of

$$I \cong \int_{a}^{b} f_{3}(x) dx$$

where $f_3(x)$ is third order Lagrange interpolation polynomial.

Composite Simpson's 3/8 Rule Formula

$$I = \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) f(x_3) \right]$$
$$h = \frac{b-a}{3}$$

Example 3

Evaluate

$$\int_{0}^{1} \left(\sqrt{\sin^3(x) + 1}\right) dx$$

by using Simpson's 3/8 rule.

Solution

Three segments with four equally spaced points are required.

Solution (Cont.)

For each value of x, find f(x)

X	f(x)
0	1.0
$\frac{1}{3}$	1.0174
$\frac{2}{3}$	1.1120
1.0	1.2633

Step 3
$$I \cong \frac{3\left(\frac{1}{3}\right)}{8} \left[1 + 3\left(1.0174\right) + 3\left(1.1120\right) + 1.2633\right] = 1.0814$$

Therefore, the numerical integration is 1.0814

Simpson's 1/3rd Rule and 3/8 Rule in Tandem

- Simpson's 3/8 rule is implemented to approximate the integrand (1) with n = 3 and four number of points.
- Simpson's 1/3rd rule is limited for even number of segments.
- To permit the computation of integrand for odd number of segments, Simpson's 1/3rd and 3/8 rule can be applied in tandem.

Figure 4: Graphical representation of the approximation of the integral with odd numbers of intervals by Simpson's 1/3rd and 3/8 rule.

Universiti Malaysia PAHANG

Example 3

Evaluate

$$\int_{0}^{1} \left(\sqrt{\sin^3(x)+1}\right) dx$$

by using Simpson's rule with n = 5.

Solution

Three segments with four equally spaced points are required.

$$b = 1, a = 0, n = 5$$

 $h = \frac{1-0}{5} = 0.2$ Step size, h

Solution (Cont.)

$$\int_{0}^{1} \left(\sqrt{\sin^{3}(x) + 1} \right) dx = \int_{0}^{0.4} \sqrt{\sin^{3}(x) + 1} dx + \int_{0.4}^{1} \sqrt{\sin^{3}(x) + 1} dx$$

Simpson's 1/3rd rule Simpson's 3/8 rule

For each value of x, find f(x)

_			
	x	f(x)	
	0	1.0	
	0.2	1.0039	
	0.4	1.0291	
	0.6	1.0863	
	0.8	1.1701	
	1.0	1.2633	
			BY NC SA

Solution (Cont.)

Step 4

$$\int_{0}^{0.4} \sqrt{\sin^3(x) + 1} \, dx = \frac{0.2}{3} \left(1 + 4 \left(1.0039 \right) + 1.0291 \right)$$

$$= 0.4030$$

$$\int_{0.4}^{1} \sqrt{\sin^3(x) + 1} \, dx = \frac{3(0.2)}{8} \left(1.0291 + 3 \left(1.0863 \right) + 3 \left(1.1701 \right) + 1.2633 \right)$$

$$= 0.6796$$

$$\int_{0}^{1} \left(\sqrt{\sin^3(x) + 1} \right) dx = 0.4030 + 0.6796 = 1.0826$$

Therefore, the numerical integration is 1.0826

Conclusion

Integration Method	Single	Composite
Trapezoidal Rule	$I = \frac{h}{2} [f(a) + f(b)]$ where $h = b - a$	$I = \frac{h}{2} \left[f(x_0) + f(x_n) + 2\sum_{i=1}^{n-1} f(x_i) \right]$ where $h = \frac{b-a}{n}$
Simpson's 1/3 rd Rule	$I = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$ where $h = \frac{b-a}{2}$	$I = \frac{h}{3} \left[f(x_0) + f(x_n) + 4 \left[f(x_1) + \dots + f(x_{n-1}) \right] + 2 \left[f(x_2) + \dots + f(x_{n-2}) \right] \right]$ where $h = \frac{b-a}{n}$
Simpson's 3/8 Rule	$I = \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$ where $h = \frac{b-a}{3}$	

Author Information

Norhayati Binti Rosli, Senior Lecturer, Applied & Industrial Mathematics Research Group, Faculty of Industrial Sciences & Technology (FIST), Universiti Malaysia Pahang, 26300 Gambang, Pahang. SCOPUS ID<u>: 36603244300</u> UMPIR ID: <u>3449</u> Google Scholars: <u>https://scholar.google.com/cit</u> <u>ations?user=SLoPW9oAAAAJ&hl=en</u> e-mail: <u>norhayati@ump.edu.my</u>

Rozieana Binti Khairuddin, Lecturer, Faculty of Industrial Sciences & Technology (FIST), Universiti Malaysia Pahang, 26300 Gambang, Pahang. 26300 Gambang, Pahang. UMPIR ID: <u>3481</u> Google Scholars: <u>https://scholar.coogle.co</u> <u>m/citations?user=c_8p0UAAAAJ&hl=en</u> e-mail: rozieana@ump.edu.mo

