7. Curve Fitting

Noraziah binti Adzhar, Senior Lecturer, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang. E-mail: noraziahadzhar@ump.edu.my

7.1 Exercises

Exercise 7.1 Given the data below.

x	1	2	3	4
f(x)	2	5	7	8

Estimate f(2.5) using third–order Lagrange interpolating polynomial.

Exercise 7.2 The following data is provided for the velocity, v of an object as a function of time, t.

t(s)	20	24	28	32	36
v(m/s)	112.0	121.9	129.7	135.7	140.4

i. Construct Newton interpolating polynomial for the given data.

ii. Estimate v(30) by using your answer in i.

Exercise 7.3 Given the data

x	1	2	2.5	3	4
f(x)	1	5	7	8	2

i. Fit this data with quadratic splines.

ii. Use the result in i. to estimate the value of f at x = 2.8 and x = 3.5.

Exercise 7.4 Dynamic viscosity of water, μ is related to temperature T in the following manner.

Т	1	2	2.5	3	4
μ	1	5	7	8	2

Predict μ at $T = 2.34^{\circ}C$ using Lagrange interpolation that fit all the given data.

Exercise 7.5 The atmospheric pressure, p as a function of height, h can be modeled by an exponential function of the form $p(h) = b \exp(-nh)$, where b and n are constants. The values of pressure measured at different height are presented in the following table.

h(m)	0	5000	10000	15000	20000
p(Pa)	100000	47500	22600	10800	5100

i. Use a linear spline to estimate the atmospheric pressure at a height of 14000 m and 700 m.

ii. Use quadratic spline to estimate the atmospheric pressure at a height of 3500 m and 7000 m.

Exercise 7.6 Develop quadratic splines for $52 \le x \le 82$. Then f(61).

x	22	42	52	82	100
f(x)	4181	4179	4186	4199	4217

Exercise 7.7 Given the data from astronomical observations of a type variable star called a *Cepheid variable* and represent variations in its apparent magnitude with time:

Time, t	0.0	0.2	0.5	0.8
Apparent magnitude, $f(t)$	0.302	0.185	0.106	0.093

Estimate f(0.45) by using

i. Newton interpolating polynomial

ii. Lagrange interpolation method

iii. Linear spline interpolation

iv. Quadratic spline interpolation

7.1 Exercises

Exercise 7.8 The following table gives the times of sunset in hours and minutes at 40° latitude for 4 days in the year 2017.

Date	May 1	May 29	June 26	July 24
Time of Sunset	18 hr 53 m	19 hr 19 m	19 hr 32 m	19 hr 21 m

Estimate the time of sunset on 27 May by using **i.** Newton interpolating polynomial

- ii. Lagrange interpolation method
- iii. Linear spline interpolation
- iv. Quadratic spline interpolation

Exercise 7.9 The saturation concentration of dissolved oxygen in water as a function of temperature and chloride concentration is listed in the following table.

	Dissolved Oxygen (mg/L)					
$T,^{\circ}C$	Concentration of Chloride (g/L)					
	C = 0g/L C = 10g/L C = 20g/L					
0	12.50	11.25	10.70			
5	11.89	10.87	9.83			
10	10.65	10.10	9.05			
15	9.89	9.65	8.77			
20	9.25	8.80	8.02			
25	8.70	8.05	7.67			
30	8.35	7.27	6.89			

Estimate the dissolved oxygen level for $T = 8.5^{\circ}C$ with chloride 10g/L by using i. Third order Newton interpolating polynomial

ii. Third order Lagrange interpolation method

iii. Linear spline interpolation (by using the chosen data in i. & ii.)

iv. Quadratic spline interpolation (by using the chosen data in i. & ii.)

Exercise 7.10 The data below is the experimental result for the thermal resistance of a transistor tabulated for air velocity from 0 to 900 FPM.

Air Velocity	Thermal Resistance
0	373.0
150	156.1
300	113.6
450	93.1
600	81.5
750	73.7
900	67.2

Interpolate the data given to estimate the thermal resistance for 485 FPM by using **i.** Third order Newton interpolating polynomial

ii. Third order Lagrange interpolation method

iii. Linear spline interpolation (by using the chosen data in i. & ii.)

iv. Quadratic spline interpolation (by using the chosen data in i. & ii.)

Exercise 7.11 The data in the table below recorded the price of gasoline (USD) in England for selected six months from year 2000 until 2004.

Year	Selected Month					
	Jan	Mar	May	July	Sep	Nov
2000	1.301	1.541	1.498	1.593	1.582	1.555
2001	1.472	1.447	1.729	1.482	1.531	1.263
2002	1.139	1.241	1.421	1.412	1.422	1.448
2003	1.473	1.748	1.542	1.524	1.728	1.535
2004	1.592	1.766	2.009	1.939	1.891	1.801

Estimate the price of gasoline in April 2004 by using **i.** Third order Newton interpolating polynomial

ii. Third order Lagrange interpolation method

iii. Linear spline interpolation (by using the chosen data in i. & ii.)

iv. Quadratic spline interpolation (by using the chosen data in i. & ii.)

Exercise 7.12 You were performed an experiment and the following values of heat capacity, c at various temperature T for a gas were determined.

T	-50	-30	0	60
С	1270	1280	1350	1480

Estimate the temperature of the gas when its heat capacity reach 1000 by using

- i. Inverse Newton interpolation method
- ii. Inverse Lagrange interpolation method

Exercise 7.13 The following data define the sea–level concentration of dissolved oxygen of fresh water as a function of temperature.

$T(^{\circ}\mathrm{C})$	8	16	24	32
$o(mgL^{-1})$	10.893	9724	8.989	8.210

What is the respective temperature if the sea-level concentration of dissolved oxygen is 8.5 mgL^{-1} ? Perform your estimation by using i. Inverse Newton interpolation method

ii. Inverse Lagrange interpolation method

Exercise 7.14 In a chemical reaction, the concentration level of a product at time, t was measured every half an hour. The results of this experiment are tabulated in the table below.

Time, t	0	0.5	1.5	2
Concentration Level	0	0.23	0.50	0.67

What is the time taken when the concentration level of the product reach 0.60? Perform your estimation by using

- i. Inverse Newton interpolation method
- ii. Inverse Lagrange interpolation method

Exercise 7.15 The shear stresses, in kilopascal (kPa), of five specimens taken at various depths in a day stratum are listed below.

Depth (m)	1.9	3.1	4.0	5.2
Shear stress (kPa)	10.5	15.8	19.6	24.7

Estimate the depth in meter if the shear stress is 17 kilopascals by using **i.** Inverse Newton interpolation method

ii. Inverse Lagrange interpolation method

Exercise 7.16 The measured data for velocity of a parachute against time is as in the following table.

Time (s)	1	3	7	11
Measured velocity (cm/s)	800	2310	3090	3940

Estimate the time taken if the velocity of the parachutist recorded is 3000 cm/s by using **i.** Inverse Newton interpolation method

ii. Inverse Lagrange interpolation method

