PAHANG

Numerical Methods Curve Fitting

by

Norhayati Rosli \& Noraziah Adzhar Faculty of Industrial Sciences \& Technology norhayati@ump.edu.my, noraziahadzhar@ump.edu.my

Numerical Methods
by Norhayati Rosli
http://ocw.ump.edu.my/course/view.php?id=449
Communitising Technology

Description

AIMS

This chapter is an introduction to the numerical methods. It is aimed to:

1. introduce the curve fitting problem.
2. show how to approximate the value of certain data.
3. define the concept of interpolation and inverse interpolation

EXPECTED OUTCOMES

1. Students should be able to explain the Newton's divided-difference table.
2. Students should be able to differentiate between interpolation and inverse interpolation.
3. Students should be able to identify linear and quadratic splines.
4. Students should be able to solve curve fitting problem using Newton interpolation method, Lagrange interpolation method, linear spline and quadratic spline.

REFERENCES

1. Norhayati Rosli, Nadirah Mohd Nasir, Mohd Zuki Salleh, Rozieana Khairuddin, Nurfatihah Mohamad Hanafi, Noraziah Adzhar. Numerical Methods, Second Edition, UMP, 2017 (Internal use)
2. Chapra, C. S. \& Canale, R. P. Numerical Methods for Engineers, Sixth Edition, McGrawHill, 2010.

Numerical Methods

Content

1 Introduction

2 Polynomial Interpolation
2.1 Newton Interpolation Polynomial
2.2 Lagrange Interpolation Polynomial
2.3 Inverse Newton Interpolation Polynomial

3 Splines and Piecewise Interpolation
3.1 First Oder Spline
3.2 Second Order Spline

INTRODUCTION

Through the limited data points, one can estimate the result for certain value of independent variable by using interpolation method.

Interpolation is a method of constructing new data points within the range of discrete data set of known data points. It means estimating the value of $f(x)$ for a certain value of x, provided that x must lies within the range of the data set and the interval or step size of x points is not necessary to be equidistant.

INTRODUCTION (Cont.)

Given the data points that generated through the function $f(x)=\cos (2 x+1)$

Table 1: Data Generated from $f(x)=\cos (2 x+1)$

x	$f(x)$	x	$f(x)$
0	0.5403	2.0	0.2837
0.5	-0.4161	2.5	0.9602
1.0	-0.9900	3.0	0.7539
1.5	-0.6536		

INTRODUCTION (Cont.)

The data points given in Table 1 can be plotted by using linear or curvilinear interpolation as illustrated in the Figure 1.

Figure 1: Linear and curvilinear interpolation of the data points.

In order to estimate the value of $f(2.4)$, a polynomial function for the respective data by using interpolation method.

INTRODUCTION (Cont.)

Spline and piecewise
interpolation which is divided into two; Linear and Quadratic splines.

POLYNOMIAL INTERPOLATION

Two types of polynomial interpolation: Newton Interpolation and Lagrange Interpolation.

It refers to a method of determining the unique $n^{\text {th }}$ order polynomial that is $n+1$ data points.

NEWTON INTERPOLATION

 METHOD
Newton Interpolation Method: General Form

The general formula for an $n^{\text {th }}$ order polynomial is

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
$$

For $n+1$ data points, there is one and only one polynomial of order n that passes through all the points.
Polynomial interpolation consists of determining the unique $n^{\text {th }}$-order polynomial that fits $n+1$ data points. Suppose that the function $f(x)$ is tabulated at the points $x_{0}, x_{1}, \ldots, x_{n}$ where the x point is not necessary to be equidistant. the Newton interpolating polynomial of degree n can be written as

$$
\begin{aligned}
f_{n}(x)= & f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right] \\
& +\cdots+\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right) f\left[x_{0}, \cdots, x_{n-1}, x_{n}\right]
\end{aligned}
$$

where $f(x)=f\left[x_{0}, x_{1}\right], f\left[x_{0}, x_{1}, x_{2}\right], \ldots, f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ are Newton's divided difference that can be calculated using Table 2.

NEWTON INTERPOLATION METHOD (Cont.)

Table 2: The Newton's Divided-Difference

x_{i}	$f\left(x_{i}\right)$	First divided differences	Second divided differences	Third divided differences
x_{0}	$f\left(x_{0}\right)$			
x_{1}	$f\left(x_{1}\right)$	$f\left[x_{1}, x_{0}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}$		
x_{2}	$f\left(x_{2}\right)$	$f\left[x_{2}, x_{1}\right]=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$	$f\left[x_{2}, x_{1}, x_{0}\right]=\frac{f\left[x_{2}, x_{1}\right]-f\left[x_{1}, x_{0}\right]}{x_{2}-x_{0}}$	
x_{3}	$f\left(x_{3}\right)$	$f\left[x_{3}, x_{2}\right]=\frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}$	$f\left[x_{3}, x_{2}, x_{1}\right]=\frac{f\left[x_{3}, x_{2}\right]-f\left[x_{2}, x_{1}\right]}{x_{3}-x_{1}}$	$\begin{gathered} f\left[x_{3}, x_{2}, x_{1}, x_{0}\right] \\ = \\ \frac{f\left[x_{3}, x_{2}, x_{1}\right]-f\left[x_{2}, x_{1}, x_{0}\right]}{x_{3}-x_{0}} \end{gathered}$
X_{4}	$f\left(x_{4}\right)$	$f\left[x_{4}, x_{3}\right]=\frac{f\left(x_{4}\right)-f\left(x_{3}\right)}{x_{4}-x_{3}}$	$f\left[x_{4}, x_{3}, x_{2}\right]=\frac{f\left[x_{4}, x_{3}\right]-f\left[x_{3}, x_{2}\right]}{x_{4}-x_{2}}$	$\begin{aligned} & f\left[x_{4}, x_{3}, x_{2}, x_{1}\right] \\ = & \frac{f\left[x_{4}, x_{3}, x_{2}\right]-f\left[x_{3}, x_{2}, x_{1}\right]}{x_{4}-x_{1}} \end{aligned}$
X 5	$f\left(x_{5}\right)$	$f\left[x_{5}, x_{4}\right]=\frac{f\left(x_{5}\right)-f\left(x_{4}\right)}{x_{5}-x_{4}}$	$f\left[x_{5}, x_{4}, x_{3}\right]=\frac{f\left[x_{5}, x_{4}\right]-f\left[x_{4}, x_{3}\right]}{x_{5}-x_{3}}$	$\begin{gathered} f\left[x_{5}, x_{4}, x_{3}, x_{2}\right] \\ = \\ \frac{f\left[x_{5}, x_{4}, x_{3}\right]-f\left[x_{4}, x_{3}, x_{2}\right]}{x_{5}-x_{2}} \end{gathered}$

NEWTON INTERPOLATION METHOD (Cont.)

Example 1

Given the data below.

x	1	5	9	13
$f(x)=\ln x$	0	1.609438	2.197225	2.564950

Based on the given data, estimate $\ln (7)$ using third-order Newton interpolating polynomial. Then, calculate the true percent relative error, ε_{t}.

NEWTON INTERPOLATION METHOD (Cont.)

Solution			
Step 1	Form a divided-difference table.		
$x \quad f(x)$	$1^{\text {st }}$ Divided Difference	$2^{\text {nd }}$ Divided Difference	$3^{\text {rd }}$ Divided Difference
10			
51.609438	$\begin{aligned} & \frac{1.609438-0}{5-1} \\ & =0.40236 \end{aligned}$		
$9 \quad 2.197225$	$\begin{aligned} & \frac{2.197225-1.609438}{9-5} \\ & =0.14695 \end{aligned}$	$\begin{aligned} & \frac{0.14695-0.40236}{9-1} \\ & =-0.03192 \end{aligned}$	
132.564950	$\begin{aligned} & \frac{2.564950-2.197225}{13-9} \\ & =0.09193 \end{aligned}$	$\begin{aligned} & \frac{0.09193-0.14695}{13-5} \\ & =-0.006878 \end{aligned}$	$\begin{aligned} & \frac{-0.006878-(-0.03192)}{13-1} \\ & =0.002087 \end{aligned}$

NEWTON INTERPOLATION METHOD (Cont.)

Solution (Cont.)

Step $2>$ Compute the approximate solution:

$$
\begin{aligned}
f_{3}(x)= & f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{1}, x_{0}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{2}, x_{1}, x_{0}\right] \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left[x_{3}, x_{2}, x_{1}, x_{0}\right] \\
f_{3}(x)= & 0+(7-1)(0.40236)+(7-1)(7-5)(-0.03192)+(7-1)(7-5)(7-9)(0.002087) \\
\approx & 1.981032
\end{aligned}
$$

Step $3>$ Compute the exact solution: $\ln (7)=1.945910$.

Step 4

$$
\varepsilon_{t}=\left|\frac{1.945910-1.981032}{1.945910}\right| \times 100 \%=1.8049 \%
$$

LAGRANGE INTERPOLATION POLYNOMIAL

Lagrange interpolating polynomial is a reformulation of the Newton polynomial which avoids the computation of divided differences.

The function $f(x)$ is approximated by using

$$
f_{n-1}(x)=\sum_{i=0}^{n} L_{i}(x) f\left(x_{i}\right)
$$

where

$$
L_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

is the Lagrange coefficient with $n^{\text {th }}$ order of interpolation.

LAGRANGE INTERPOLATION POLYNOMIAL (Cont.)

Example 3

Estimate $f(2)$ by using Lagrange interpolation polynomial for the following data.

x	1	4	5	6
$f(x)$	2.0248	8.1915	11.3181	16.8020

LAGRANGE INTERPOLATION POLYNOMIAL (Cont.)

Solution

In this example, we are given four data points. Therefore, $n=3$, that is we need to derive a cubic polynomial using Lagrange interpolation method. The formula of third order Lagrange interpolation is:

$$
\begin{aligned}
f_{3}(x)= & L_{0} f\left(x_{0}\right)+L_{1} f\left(x_{1}\right)+L_{2} f\left(x_{2}\right)+L_{3} f\left(x_{3}\right) \\
= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} f\left(x_{1}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} f\left(x_{2}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} f\left(x_{3}\right)
\end{aligned}
$$

LAGRANGE INTERPOLATION POLYNOMIAL (Cont.)

Solution

INVERSE INTERPOLATION

Newton divideddifference method and Lagrange interpolation methods are used but in reversed way.

INVERSE INTERPOLATION (Cont.)

Inverse Newton Interpolation Polynomial

The general Inverse Newton interpolation polynomial can be represented as

$$
\begin{aligned}
P_{n}(f)= & x_{0}+\left(f-f_{0}\right) x\left[f_{1}, f_{0}\right]+\left(f-f_{0}\right)\left(f-f_{1}\right) x\left[f_{2}, f_{1}, f_{0}\right] \\
& +\ldots+\left(f-f_{0}\right)\left(f-f_{1}\right) \ldots\left(f-f_{n-1}\right) x\left[f_{n}, f_{n-1}, \ldots, f_{0}\right]
\end{aligned}
$$

where

$$
x\left[f_{n}, f_{n-1}, \ldots, f_{0}\right]=\frac{x\left[f_{n}, f_{n-1}, \ldots, f_{1}\right]-x\left[f_{n-1}, f_{n-1}, \ldots, f_{0}\right]}{f_{n}-f_{0}}
$$

INVERSE INTERPOLATION (Cont.)

Inverse Lagrange Interpolation Polynomial

The general Inverse Lagrange interpolation polynomial can be represented as

$$
P_{n}(f)=\sum_{i=0}^{n} L_{i} f\left(x_{i}\right)
$$

where

$$
L_{i} f\left(x_{i}\right)=\prod_{j=0, j \neq i}^{n} \frac{f-f_{j}}{f_{i}-f_{j}}
$$

INVERSE INTERPOLATION (Cont.)

Example 4

The following table is generated through the function $f(x)=\frac{5}{x}$.

x	1	4	5	6
$f(x)$	2.0248	8.1915	11.3181	16.8020

Employ inverse interpolation to determine the value of x that correspond to $f(x)=1.5$ for the above data by using
i) Newton interpolation method
ii) Lagrange interpolation method

Then, compute the true percent relative error for both methods. Use five decimal places in all calculations.

INVERSE INTERPOLATION (Cont.)

Solution

i) Inverse Newton interpolation method.

$$
\begin{aligned}
P_{3}(f)= & x_{0}+\left(f-f_{0}\right) x\left[f_{1}, f_{0}\right]+\left(f-f_{0}\right)\left(f-f_{1}\right) x\left[f_{2}, f_{1}, f_{0}\right] \\
& +\left(f-f_{0}\right)\left(f-f_{1}\right)\left(f-f_{2}\right) x\left[f_{3}, f_{2}, f_{1}, f_{0}\right] \\
P_{3}(f)= & 3.2+(1.5-1.5625)(-2.17628)+(1.5-1.5625)(1.5-1.4706)(1.5651) \\
& +(1.5-1.5625)(1.5-1.4706)(1.5-1.3889)(-1.19719) \\
= & 3.33339
\end{aligned}
$$

INVERSE INTERPOLATION (Cont.)

Solution

ii) Inverse Lagrange interpolation method

$$
\begin{aligned}
P_{3}(1.5)= & \frac{(1.5-1.4706)(1.5-1.3889)(1.5-1.3158)}{(1.5625-1.4706)(1.5625-1.3889)(1.5625-1.3158)}(3.2) \\
& +\frac{(1.5-1.5625)(1.5-1.3889)(1.5-1.3158)}{(1.4706-1.5625)(1.4706-1.3889)(1.4706-1.3158)}(3.4) \\
& +\frac{(1.5-1.5625)(1.5-1.4706)(1.5-1.3158)}{(1.3889-1.5625)(1.3889-1.4706)(1.3889-1.3158)}(3.6) \\
& +\frac{(1.5-1.5625)(1.5-1.4706)(1.5-1.3889)}{(1.3158-1.5625)(1.3158-1.4706)(1.3158-1.3889)}(3.8) \\
= & 0.15287(3.2)+1.10046(3.4)-0.32646(3.6)+0.07313(3.8) \\
= & 3.33339
\end{aligned}
$$

SPLINE AND PIECEWISE INTERPOLATION

Introduction

- A high order polynomial interpolation might not be the best choice to interpolate between a large numbers of data points because of erroneous results due to round-o error and overshoot.
- A higher-order polynomial tends to swing through wild oscillations in the vicinity of abrupt change (see Figure 2).

Figure 2: Abrupt changes of the function as the order of polynomial gets higher.

SPLINES AND PIECEWISE INTERPOLATION (Cont.)

Introduction (Cont.)

- An alternative approach which apply lower order polynomials to subsets of data points is required to interpolate the value of $f(x)$ for large number of data.
- This approach is called spline interpolation method. Spline polynomial often performs better than higher degree polynomials.
- As in Figure 3, spline performs better because it kept the oscillations to a minimum by using small subsets of points for each interval rather than every point.

Figure 3: First-order polynomials generated through spline interpolation for seven data points

SPLINES AND PIECEWISE INTERPOLATION (Cont.)

Introduction (Cont.)

LINEAR SPLINE

Introduction

In the first-order spline, basically we are finding the straight line equations connecting each pair of interval $\left(x_{i}, x_{i+1}\right)$ for $1 \leq i \leq n-1$ as illustrated in Figure 4.

Figure 4: Graph of first-order spline.

LINEAR SPLINE (Cont.)

Linear Spline: Formula

For linear spline, the set of straight line functions for n given points and $n-1$ intervals are

$$
\begin{array}{ll}
s_{1}(x)=f_{1}+\frac{f_{2}-f_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) & x_{1} \leq x \leq x_{2} \\
s_{2}(x)=f_{2}+\frac{f_{3}-f_{2}}{x_{3}-x_{2}}\left(x-x_{2}\right) & x_{2} \leq x \leq x_{3} \\
s_{3}(x)=f_{3}+\frac{f_{4}-f_{3}}{x_{4}-x_{3}}\left(x-x_{3}\right) & x_{3} \leq x \leq x_{4}
\end{array}
$$

LINEAR SPLINE (Cont.)

Example 5

Consider the following data.

x	2	5	8	11
$f(x)$	1.5	4	2.8	6

i) Derive a set of linear functions for the data given.
ii) Evaluate the function at $x=6.5$.

LINEAR SPLINE (Cont.)

Solution

i) Since we have four data, so we can determine three splines function,

$$
\begin{array}{ll}
s_{1}(x)=f_{1}+\frac{f_{2}-f_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)=1.5+\frac{4.0-1.5}{5.0-2.0}(x-2.0) & 2.0 \leq x \leq 5.0 \\
s_{2}(x)=f_{2}+\frac{f_{3}-f_{2}}{x_{3}-x_{2}}\left(x-x_{2}\right)=4.0+\frac{2.8-4.0}{8.0-5.0}(x-5.0) & 5.0 \leq x \leq 8.0 \\
s_{3}(x)=f_{3}+\frac{f_{4}-f_{3}}{x_{4}-x_{3}}\left(x-x_{3}\right)=2.8+\frac{6.0-2.8}{11.0-8.0}(x-8.0) & 8.0 \leq x \leq 11.0
\end{array}
$$

ii) Since $x=6.5$ lies in the second interval, so we will use s_{2} to make the prediction,

$$
s_{2}(6.5)=4.0+\frac{2.8-4.0}{8.0-5.0}(6.5-5.0)=3.4
$$

QUADRATIC SPLINE

Introduction

In the second-order spline, we are ending the quadratic equations connecting each pair of interval (x_{i}, x_{i+1}) for $1 \leq i \leq n-1$ as illustrated in Figure 5.

Figure 5: Graph of second-order spline.

QUADRATIC SPLINE (Cont.)

Quadratic Spline: Formula

In general the quadratic spline function is:

$$
s_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)^{2} \quad x_{i} \leq x \leq x_{i+1}
$$

where the constants a, b and c can be calculated using

$$
\begin{aligned}
& a_{i}=f_{i} \\
& f_{i+1}=f_{i}+b_{i} h_{i}+c_{i} h_{i}^{2} \\
& b_{i+1}=b_{i}+2 c_{i} h_{i}
\end{aligned}
$$

and given that $c_{1}=0$ and $h_{i}=x_{i+1}-x_{i}$.

QUADRATIC SPLINE (Cont.)

Example 7

Consider the following data.

x	2	2.5	3	3.5
$f(x)$	0.125	0.064	0.037	0.0233

i) Fit the data with second-order splines.
ii) Evaluate the function at $x=2.2$ and $x=3.3$.

QUADRATIC SPLINE (Cont.)

Solution

i) Find $s_{1}(x)$ for interval $2 \leq x \leq 2.5$:

$$
\begin{aligned}
& s_{1}(x)=a_{1}+b_{1}\left(x-x_{1}\right)+c_{1}\left(x-x_{1}\right)^{2} \\
& c_{1}=0, a_{1}=f_{1}=0.125 \\
& s_{1}(x)=0.125+b_{1}(x-2) \\
& h_{1}=x_{2}-x_{1} \rightarrow 2.5-2=0.5 \\
& f_{1}+b_{1} h_{1}+c_{1} h_{1}^{2}=f_{2} \\
& 0.125+b_{1}(0.5)=0.064 \rightarrow b_{1}=-0.122 \\
& b_{1}+2 c_{1} h_{1}=b_{2} \rightarrow b_{2}=-0.122
\end{aligned}
$$

Thus,

$$
s_{1}(x)=0.125-0.122(x-2) .
$$

QUADRATIC SPLINE (Cont.)

Solution (Cont.)

Find $s_{2}(x)$ for interval $2.5 \leq x \leq 3.0$:

$$
\begin{aligned}
& s_{2}(x)=a_{2}+b_{2}\left(x-x_{2}\right)+c_{2}\left(x-x_{2}\right)^{2} \\
& a_{2}=f_{2}=0.064 \\
& s_{2}(x)=0.064+b_{2}\left(x-x_{2}\right)+c_{2}\left(x-x_{2}\right)^{2} \\
& h_{2}=x_{3}-x_{2} \rightarrow 3-2.5=0.5 \\
& f_{2}+b_{2} h_{2}+c_{2} h_{2}^{2}=f_{3} \\
& 0.064+(-0.122)(0.5)+c_{2}(0.5)^{2}=0.0370 \rightarrow c_{2}=0.136 \\
& b_{2}+2 c_{2} h_{2}=b_{3} \\
& (-0.122)+2(0.136)(0.5)=b_{3} \rightarrow b_{3}=0.014
\end{aligned}
$$

Thus,

$$
s_{2}(x)=0.064-0.122(x-2.5)-0.136(x-2.5)^{2}
$$

QUADRATIC SPLINE (Cont.)

Solution (Cont.)

Find $s_{3}(x)$ for interval $3 \leq x \leq 3.5$:

$$
\begin{aligned}
& s_{3}(x)=a_{3}+b_{3}\left(x-x_{3}\right)+c_{3}\left(x-x_{3}\right)^{2} \\
& a_{3}=f_{3}=0.0370 \\
& s_{3}(x)=0.037+b_{3}\left(x-x_{3}\right)+c_{3}\left(x-x_{3}\right)^{2} \\
& h_{3}=x_{4}-x_{3} \rightarrow 3.5-3=0.5 \\
& f_{3}+b_{3} h_{3}+c_{3} h_{3}^{2}=f_{4} \\
& 0.037+(0.014)(0.5)+c_{2}(0.5)^{2}=0.0233 \rightarrow c_{3}=-0.0828
\end{aligned}
$$

Thus,

$$
s_{3}(x)=0.037+0.014(x-3)-0.0828(x-3)^{2}
$$

QUADRATIC SPLINE (Cont.)

Solution

Therefore:

$$
\begin{aligned}
& s_{1}(x)=0.125-0.122(x-2) \quad 2.0 \leq x \leq 2.5 \\
& s_{2}(x)=0.064-0.122(x-2.5)-0.136(x-2.5)^{2} \\
& s_{3}(x)=0.037+0.014(x-3)-0.0828(x-3)^{2} \quad 3.0 \leq x \leq 3.5
\end{aligned}
$$

ii) To estimate the value of $f(x)$ at $x=2.2$, we use $s_{1}(x)$ since $x=2.2$ lies in the interval [2,2.5]. Hence,

$$
s_{1}(2.2)=0.125-0.122(2.2-2)=0.1006
$$

To estimate the value of $f(x)$ at $x=3.3$, we use $s_{1}(x)$ since $x=3.3$ lies in the interval [3,3.5]. Hence,

$$
s_{3}(3.3)=0.037+0.014(3.3-3)-0.0828(3.3-3)^{2}=0.0337
$$

CONCLUSION

- Interpolation method is used to estimate the value of $f(x)$ for any value of x within the range of discrete data set of known data points .
- The methods involve in this chapter are polynomial interpolation method and splines method.
- Polynomial interpolation method covers in this chapter are Newton interpolation method and Lagrange interpolation method while splines method divided into two methods which are linear spline and quadratic spline.
- Inverse interpolation method is to estimate the value of x for any value of $f(x)$ within the range of discrete data set of known data points.

Author Information

Norhayati Binti Rosli, Senior Lecturer,
Applied \& Industrial Mathematics Research Group,
Faculty of Industrial Sciences \&
Technology (FIST), Universiti Malaysia Pahang, 26300 Gambang, Pahang.
SCOPUS ID: 36603244300 UMPIR ID: 3449

Google
Scholars: https://scholar.google.com/cit ations?user=SLoPW90AAAAJ\&hl=en
e-mail: norhavati@ump.edu.my

Numerical Methods

