

Numerical Methods Solving Linear Algebraic Equations: Iterative Methods

by

Norhayati Rosli, Rozieana Khairuddin & Nurfatihah Mohd Hanafi Faculty of Industrial Sciences & Technology norhayati@ump.edu.my, rozieana@ump.edu.my

Description

AIMS

This chapter is aimed to solve small numbers of linear algebraic equations by using iterative methods involving **Jacobi method** and **Gauss-Seidel method**

EXPECTED OUTCOMES

1. Students should be able to solve linear algebraic equations by using Jacobi and Gauss-Seidel methods

REFERENCES

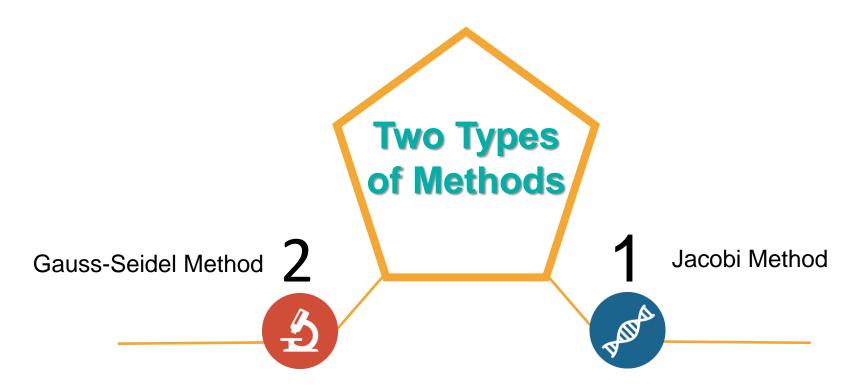
- 1. Norhayati Rosli, Nadirah Mohd Nasir, Mohd Zuki Salleh, Rozieana Khairuddin, Nurfatihah Mohamad Hanafi, Noraziah Adzhar. *Numerical Methods,* Second Edition, UMP, 2017 (Internal use)
- 2. Chapra, C. S. & Canale, R. P. *Numerical Methods for Engineers*, Sixth Edition, McGraw–Hill, 2010.

Content

- Introduction
- Jacobi Method
- Gauss-Seidel Method

INTRODUCTION

Solving Linear Algebraic Equations: Iterative Methods



JACOBI METHOD

Jacobi Methods Procedures

Rearrange the equation to make the system **diagonally dominant**

Write the equation in an explicit form

The calculation process starts by assuming initial values for the unknown for the first iteration

Jacobi Methods Procedures (Cont.)

Step 1

Rearrange the equation to make the system diagonally dominant. For a system of n equations, $\mathbf{A}\mathbf{x} = \mathbf{b}$ a sufficient condition for convergence is that for every row of matrix, the absolute of the diagonal element is greater than or equal to the sum of the absolute values of the diagonal elements in that row

$$\left|a_{ii}\right| \ge \sum_{j=1, j \ne i}^{n} \left|a_{ij}\right|$$

Jacobi Methods Procedures (Cont.)

Step 2

Write the equation in an explicit form

Each unknown is written in terms of the other unknowns. For 3 x 3 matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Jacobi Methods Procedures (Cont.)

Step 3

The calculation process starts by assuming initial values for the unknowns for the first iteration. Start the calculation by using the given initial condition.

Example 1

Use the Jacobi method to obtain the solution for.

$$8x_1 + x_2 + x_3 = 10$$
$$2x_1 + x_2 + 9x_3 = -2$$
$$x_1 - 7x_2 + 2x_3 = 4$$

Use 4 decimal places in your computation and let $x_i^{(0)} = (0,0,0)^T$. Compute up to two iterations and calculate the approximate percent relative error for each iteration.

Solution

Step 1

Rearrange the equation to make the system diagonally dominant.

$$\begin{bmatrix} 8 & 1 & 1 \\ 2 & 1 & 9 \\ 1 & -7 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ -2 \\ 4 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 8 & 1 & 1 \\ 1 & -7 & 2 \\ 2 & 1 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 4 \\ -2 \end{bmatrix}$$

Solution (Cont.)

Step 2

Write the equations in explicit form.

$$x_1^{(k+1)} = \frac{10 - x_2^{(k)} - x_3^{(k)}}{8}$$

$$x_2^{(k+1)} = \frac{4 - x_1^{(k)} - 2x_3^{(k)}}{-7}$$

$$x_3^{(k+1)} = \frac{-2 - 2x_1^{(k)} - x_2^{(k)}}{9}$$

Solution (Cont.)

Step 3

Start calculation with the given initial condition.

1st iteration,
$$k = 0$$
, $x_i^{(0)} = (0, 0, 0)^T$

$$x_1^{(1)} = \frac{10 - x_2^{(0)} - x_3^{(0)}}{8} = \frac{10 - 0 - 0}{8} = 1.25$$

$$x_2^{(1)} = \frac{4 - x_1^{(0)} - 2x_3^{(0)}}{-7} = \frac{4 - 0 - 0}{-7} = -0.5714$$

$$x_3^{(1)} = \frac{-2 - 2x_1^{(0)} - x_2^{(0)}}{9} = \frac{-2 - 0 - 0}{9} = -0.2222$$

Solution (Cont.)

The approximate percent relative error for $x_1^{(1)}$, $x_2^{(1)}$, and $x_3^{(1)}$ are computed as follows:

$$\varepsilon_{a_{x_1}} = \left| \frac{1.25 - 0}{1.25} \right| \times 100\% = 100\%$$

$$\varepsilon_{a_{x_2}} = \left| \frac{-0.5714 - 0}{-0.5714} \right| \times 100\% = 100\%$$

$$\varepsilon_{a_{x_3}} = \left| \frac{-0.2222 - 0}{-0.2222} \right| \times 100\% = 100\%$$

Solution (Cont.)

2nd iteration, k = 1, $x_i^{(1)} = (1.2500, -0.5714, -0.2222)^T$

$$x_1^{(2)} = \frac{10 - x_2^{(1)} - x_3^{(1)}}{8} = \frac{10 - (-0.5714) - (-0.2222)}{8} = 1.3492$$

$$x_2^{(2)} = \frac{4 - x_1^{(1)} - 2x_3^{(1)}}{-7} = \frac{4 - 1.25 + 0.4444}{-7} = -0.4563$$

$$x_3^{(2)} = \frac{-2 - 2x_1^{(1)} - x_2^{(1)}}{9} = \frac{-2 - 2.5 + 0.5714}{9} = -0.4365$$

Solution (Cont.)

The approximate percent relative error for $x_1^{(2)}$, $x_2^{(2)}$, and $x_3^{(2)}$ are computed as follows:

$$\varepsilon_{a_{x_1}} = \left| \frac{1.3492 - 1.25}{1.3492} \right| \times 100\% = 7.35\%$$

$$\varepsilon_{a_{x_2}} = \left| \frac{-0.4563 + 0.5714}{-0.4563} \right| \times 100\% = 25.22\%$$

$$\varepsilon_{a_{x_3}} = \left| \frac{-0.4365 + 0.2222}{-0.4365} \right| \times 100\% = 49.10\%$$

Therefore after two iterations, $x_1 = 1.3492$, $x_2 = -0.4563$, $x_3 = -0.4365$.

GAUSS-SEIDEL METHOD (Cont.)

Gauss Seidel Methods Procedures

STEP 1

Rearrange the equation to make the system **diagonally dominant**

STEP 2

Write the equation in an explicit form

$$x_{1}^{(k+1)} = \frac{b_{1} - a_{12}x_{2}^{(k)} - a_{13}x_{3}^{(k)}}{a_{11}}$$

$$x_{2}^{(k+1)} = \frac{b_{2} - a_{21}x_{1}^{(k+1)} - a_{23}x_{3}^{(k)}}{a_{22}}$$

$$x_{3}^{(k+1)} = \frac{b_{3} - a_{31}x_{1}^{(k+1)} - a_{32}x_{2}^{(k+1)}}{a_{33}}$$

The calculation process starts by assuming initial values for the unknown for the first iteration

Example 2

Use the Gauss-Seidel method to obtain the solution for.

$$8x_1 + x_2 + x_3 = 10$$
$$2x_1 + x_2 + 9x_3 = -2$$
$$x_1 - 7x_2 + 2x_3 = 4$$

Use 4 decimal places in your computation and let $x_i^{(0)} = (0,0,0)^T$. Compute up to two iterations and calculate the approximate percent relative error for each iteration and compare the solution with the results obtain in Example 1.

Solution

Step 1

Rearrange the equation to make the system diagonally dominant.

$$\begin{bmatrix} 8 & 1 & 1 \\ 2 & 1 & 9 \\ 1 & -7 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ -2 \\ 4 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 8 & 1 & 1 \\ 1 & -7 & 2 \\ 2 & 1 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 4 \\ -2 \end{bmatrix}$$

Solution (Cont.)

Write the equations in explicit form.

$$x_1^{(k+1)} = \frac{10 - x_2^{(k)} - x_3^{(k)}}{8}$$

$$x_2^{(k+1)} = \frac{4 - x_1^{(k+1)} - 2x_3^{(k)}}{-7}$$

$$x_3^{(k+1)} = \frac{-2 - 2x_1^{(k+1)} - x_2^{(k+1)}}{9}$$

Solution (Cont.)

Step 3

Start calculation with the given initial condition.

1st iteration,
$$k = 0$$
, $x_i^{(0)} = (0, 0, 0)^T$

$$x_1^{(1)} = \frac{10 - x_2^{(0)} - x_3^{(0)}}{8} = \frac{10 - 0 - 0}{8} = 1.25$$

$$x_2^{(1)} = \frac{4 - x_1^{(1)} - 2x_3^{(0)}}{-7} = \frac{4 - 1.25 - 0}{-7} = -0.3929$$

$$x_3^{(1)} = \frac{-2 - 2x_1^{(1)} - x_2^{(1)}}{9} = \frac{-2 - 2(1.25) + 0.3929}{9} = -0.4563$$

Solution (Cont.)

The approximate percent relative error for $x_1^{(1)}$, $x_2^{(1)}$, and $x_3^{(1)}$ are computed as follows:

$$\varepsilon_{a_{x_1}} = \left| \frac{1.25 - 0}{1.25} \right| \times 100\% = 100\%$$

$$\varepsilon_{a_{x_2}} = \left| \frac{-0.3929 - 0}{-0.3929} \right| \times 100\% = 100\%$$

$$\varepsilon_{a_{x_3}} = \left| \frac{-0.4563 - 0}{-0.4563} \right| \times 100\% = 100\%$$

Solution (Cont.)

2nd iteration,
$$k = 1$$
, $x_i^{(1)} = (1.2500, -0.3929, -0.4563)^T$

$$x_1^{(2)} = \frac{10 - x_2^{(1)} - x_3^{(1)}}{8} = \frac{10 - (-0.3929) - (-0.4563)}{8} = 1.3562$$

$$x_2^{(2)} = \frac{4 - x_1^{(2)} - 2x_3^{(1)}}{-7} = \frac{4 - 1.3562 - 2(-0.4563)}{-7} = -0.5081$$

$$x_3^{(2)} = \frac{-2 - 2x_1^{(2)} - x_2^{(2)}}{9} = \frac{-2 - 2(1.3562) + 0.5081}{9} = -0.4671$$

GAUSS-SEIDEL METHOD (Cont.) Universiti Malaysia PAHANG COUNTY STREET, CONTROLL METHOD (CONT.) Universiti Malaysia PAHANG COUNTY STREET, CONTROLL METHOD (CONT.) UNIVERSITI MALAYSIA PAHANG COUNTY STREET, CONTROLL METHOD (CONT.) UNIVERSITI MALAYSIA PAHANG CONTROLL METHOD (CONTROLL METHOD (CONTROLL

Solution (Cont.)

The approximate percent relative error for $x_1^{(2)}$, $x_2^{(2)}$, and $x_3^{(2)}$ are computed as follows:

$$\varepsilon_{a_{x_1}} = \left| \frac{1.3562 - 1.25}{1.3562} \right| \times 100\% = 7.83\%$$

$$\varepsilon_{a_{x_2}} = \left| \frac{-0.5081 + 0.3929}{-0.5081} \right| \times 100\% = 22.67\%$$

$$\varepsilon_{a_{x_3}} = \left| \frac{-0.4671 + 0.4563}{-0.4671} \right| \times 100\% = 2.31\%$$

Therefore after two iterations, $x_1 = 1.3562$, $x_2 = -0.5081$, $x_3 = -0.4671$.

Solution (Cont.)

Comparison between Gauss-Seidel and Jacobi methods of this example is presented below:

Vari able	Jacobi Methods	$\varepsilon_{a_{Jacobi}}(\%)$	Gauss-Seidel Method	$\varepsilon_{a_{Gauss-Sedel}}$ (%)	Exact Solution
x_1	1.3492	7.35	1.3562	7.83	1.3725
x_2	-0.4563	25.22	-0.5081	22.67	-0.5098
x_3	-0.4365	49.10	-0.4671	2.31	-0.4706

The solution that is obtained via Gauss-Seidel method converge faster compare to Jacobi Method.

Conclusion

Method	Formula
Jacobi	$x_1^{(k+1)} = \frac{b_1 - a_{12} x_2^{(k)} - a_{13} x_3^{(k)}}{a_{11}}$
	$x_2^{(k+1)} = \frac{b_2 - a_{21} x_1^{(k)} - a_{23} x_3^{(k)}}{a_{22}}$
	$x_3^{(k+1)} = \frac{b_3 - a_{31} x_1^{(k)} - a_{32} x_2^{(k)}}{a_{33}}$
Gauss-Seidel	$x_1^{(k+1)} = \frac{b_1 - a_{12} x_2^{(k)} - a_{13} x_3^{(k)}}{a_{11}}$
	$x_2^{(k+1)} = \frac{b_2 - a_{21} x_1^{(k+1)} - a_{23} x_3^{(k)}}{a_{22}}$
	$x_3^{(k+1)} = \frac{b_3 - a_{31} x_1^{(k+1)} - a_{32} x_2^{(k+1)}}{a_{33}}$

Author Information

Norhayati Binti Rosli,

Senior Lecturer,

Applied & Industrial Mathematics Research

Group,

Faculty of Industrial Sciences & Technology

(FIST),

Universiti Malaysia Pahang,

26300 Gambang, Pahang.

SCOPUS ID: 36603244300

UMPIR ID: 3449

Google

Scholars: https://scholar.google.com/citations

?user=SLoPW9oAAAAJ&hl=en
e-mail: norhayati@ump.edu.my

Rozieana Binti Khairuddin,

Lecturer,

Faculty of Industrial Sciences & Technology (FIST),

Universiti Malaysia Pahang,

26300 Gambang, Pahang.

UMPIR ID: 3481

Google

В

П

П

П

Scholars: https://scholar.google.com/citations?user

=o_8-p0UAAAAJ&hl=en

e-mail: rozieana@ump.edu.my

Nurfatihah Binti Mohd Hanafi e-mail: nurfatihah_hanafi@yahoo.com

