4. Solving Linear Algebraic of Equations- Direct Methods

Mohd Zuki Salleh,
Applied \& Industrial Mathematics Research Group,
Faculty of Industrial Sciences \& Technology (FIST),
Universiti Malaysia Pahang,
Lebuhraya Tun Razak,
26300 Gambang, Kuantan,
Pahang, Malaysia
E-mail: zuki@ump.edu.my

4.1 Exercises

Exercises: Gauss Elimination Method

Exercise 4.1 Given the system of linear equations

$$
\begin{aligned}
5.3\left(5 x_{2}-13\right)+32.13 x_{3} & =698.1-13.53 x_{1}+12.2 x_{4} \\
7.32 x_{1}-24.6 x_{3}+5.65 x_{2}+4 x_{4} & =560 \\
5.32\left(7 x_{3}+12.2 x_{1}\right) & =5.75 x_{2}+989-2.21 x_{4} \\
12.52 x_{1}-3.5 x_{2}+8.78 x_{3}-6.2 x_{4}-485 & =0
\end{aligned}
$$

i. Transform the system of linear equations in matrix form of $\mathbf{A x}=\mathbf{b}$.
ii. Solve the system of linear equations using Gauss elimination with partial pivoting.

Exercise 4.2 Given the system of linear equations

$$
\begin{aligned}
7.14\left(5 x_{4}+4.1 x_{1}\right) & =7.23 x_{3}+832-3.14 x_{2} \\
16.67 x_{1}-19.71 x_{3}-26.9 x_{2}+7 x_{4} & =658 \\
3.65\left(7.1 x_{3}-11\right)+17.5 x_{2} & =682.85+23.53 x_{4}-24.3 x_{1} \\
47.2 x_{1}-7.3 x_{2}+9.72 x_{3}-4.9 x_{4}-949 & =0
\end{aligned}
$$

i. Transform the system of linear equations in matrix form of $\mathbf{A x}=\mathbf{b}$.
ii. Solve the system of linear equations using Gauss elimination with partial pivoting.

Exercise 4.3 Given the system of linear equations

$$
\begin{aligned}
0.143 x_{1}+0.357 x_{2}+2.01 x_{3} & =-5.17 \\
-1.31 x_{1}+0.911 x_{2}+1.99 x_{3} & =-5.46 \\
11.2 x_{1}-4.30 x_{2}-0.605 x_{3} & =4.42
\end{aligned}
$$

Solve using Gauss elimination with partial pivoting.

Exercise 4.4 The currents i_{1}, i_{2}, i_{3} and i_{4} can be determined by solving the following systems of equations:

$$
\begin{aligned}
9 i_{1}-4 i_{2}-2 i_{3} & =24 \\
-4 i_{1}+17 i_{2}-6 i_{3}-3 i_{4} & =-16 \\
-2 i_{1}-6 i_{2}+14 i_{3}-6 i_{4} & =0 \\
-3 i_{2}-6 i_{3}+11 i_{4} & =18
\end{aligned}
$$

Find i_{1}, i_{2}, i_{3} and i_{4} for the system of linear equations by using Naïve Gauss Elimination methods.

Exercises: LU Factorization

Exercise 4.5 Given the system of linear equations

$$
\begin{aligned}
34 x_{1}+12 x_{2}+15 x_{3} & =82 \\
12 x_{1}+16 x_{2}+17 x_{3} & =69 \\
15 x_{1}+17 x_{2}+22 x_{3} & =92
\end{aligned}
$$

i. Transform the system of linear equations in matrix form of $\mathbf{A x}=\mathbf{b}$.
ii. Solve the system of linear equations by using Cholesky factorization.

Exercise 4.6 Given the system of linear equations

$$
\begin{aligned}
1.25 x_{1}+2.012 x_{2}+5.3 x_{3} & =25.81 \\
-2.12 x_{1}+3.52 x_{2}+6.215 x_{3}-11.25 & =0 \\
6.21 x_{1}+5.6 x_{2}-2.25 x_{3} & =-41.2
\end{aligned}
$$

i. Transform the system of linear equations in matrix form of $\mathbf{A x}=\mathbf{b}$.
ii. Solve the system of linear equations by using (a) Crout's method, (b) Naïve Gauss elimination as LU factorization.

Exercise 4.7 Given the system of linear equations

$$
\begin{aligned}
20 x_{1}+12.5 x_{2} & =76.2-16.4 x_{3} \\
2.5 x_{1}+2.2 x_{3}-58.4 & =-5 x_{2} \\
6 x_{1}+3.3 x_{2}+8 x_{3}-62.11 & =0
\end{aligned}
$$

i. Transform the system of linear equations in matrix form of $\mathbf{A x}=\mathbf{b}$.
ii. Solve the system of linear equations by using (a) Crout's method, (b) Naïve Gauss elimination as LU factorization.

Exercise 4.8 Given the system of linear equations

$$
\begin{aligned}
12 x_{1}+4 x_{2}-2 x_{3}+x_{4} & =46.8 \\
3 x_{1}+7 x_{2} & =6 x_{3}-2 x_{4}+62.3 \\
x_{1}-6 x_{2}+4 x_{3}-76 & =0 \\
5 x_{1}+2 x_{2}+x_{3}+3 x_{4} & =88.6
\end{aligned}
$$

i. Transform the system of linear equations in matrix form of $\mathbf{A x}=\mathbf{b}$.
ii. Solve the system of linear equations by using (a) Crout's method, (b) Naïve Gauss elimination as LU factorization.

Exercise 4.9 Given the system of linear equations

$$
\begin{aligned}
16 x_{1}+4 x_{2}+4 x_{3}-4 x_{4} & =32 \\
4 x_{1}+10 x_{2}+4 x_{3}+2 x_{4} & =26 \\
4 x_{1}+4 x_{2}+6 x_{3}-2 x_{4} & =20 \\
-4 x_{1}+2 x_{2}-2 x_{3}+4 x_{4} & =-6
\end{aligned}
$$

Construct a Cholesky decomposition and solve for $\mathbf{A x}=\mathbf{b}$.

References 1. Chapra, C. S. \& Canale, R. P. Numerical Methods for Engineers, Sixth Edition, McGraw-Hill, 2010.

