3. Solving Small Numbers of Equations

Mohd Zuki Salleh,
Applied \& Industrial Mathematics Research Group,
Faculty of Industrial Sciences \& Technology (FIST),
Universiti Malaysia Pahang,
Lebuhraya Tun Razak,
26300 Gambang, Kuantan,
Pahang, Malaysia
E-mail: zuki@ump.edu.my

3.1 Exercises

Exercises: Gauss Elimination Method

Exercise 3.1 Given the system of linear equations

$$
\begin{aligned}
5.3\left(5 x_{2}-13\right)+32.13 x_{3} & =698.1-13.53 x_{1}+12.2 x_{4} \\
7.32 x_{1}-24.6 x_{3}+5.65 x_{2}+4 x_{4} & =560 \\
5.32\left(7 x_{3}+12.2 x_{1}\right) & =5.75 x_{2}+989-2.21 x_{4} \\
12.52 x_{1}-3.5 x_{2}+8.78 x_{3}-6.2 x_{4}-485 & =0
\end{aligned}
$$

i. Transform the system of linear equations in matrix form of $\mathbf{A x}=\mathbf{b}$.
ii. Solve the system of linear equations using Cramer's rule.

Exercise 3.2 Given the system of linear equations

$$
\begin{aligned}
7.14\left(5 x_{4}+4.1 x_{1}\right) & =7.23 x_{3}+832-3.14 x_{2} \\
16.67 x_{1}-19.71 x_{3}-26.9 x_{2}+7 x_{4} & =658 \\
3.65\left(7.1 x_{3}-11\right)+17.5 x_{2} & =682.85+23.53 x_{4}-24.3 x_{1} \\
47.2 x_{1}-7.3 x_{2}+9.72 x_{3}-4.9 x_{4}-949 & =0
\end{aligned}
$$

i. Transform the system of linear equations in matrix form of $\mathbf{A x}=\mathbf{b}$.
ii. Solve the system of linear equations using Cramer's rule.

