Numerical Methods
 Solving Small Numbers of Linear Algebraic Equations

By

Norhayati Rosli \& Mohd Zuki Bin Salleh Faculty of Industrial Sciences \& Technology norhayati@ump.edu.my, zuki@ump.edu.my

Description

AIMS

This chapter is aimed to solve small numbers of linear algebraic equations by using two types of methods involving graphical method and Cramer's rule.

EXPECTED OUTCOMES

1. Students should be able to transform the system of linear equations into matrix form.
2. Students should be able to solve small numbers of equations by using graphical method and Cramer's rule.

REFERENCES

1. Norhayati Rosli, Nadirah Mohd Nasir, Mohd Zuki Salleh, Rozieana Khairuddin, Nurfatihah Mohamad Hanafi, Noraziah Adzhar. Numerical Methods, Second Edition, UMP, 2017 (Internal use)
2. Chapra, C. S. \& Canale, R. P. Numerical Methods for Engineers, Sixth Edition, McGraw-Hill, 2010.

Content

1. Introduction to System of Linear Equations
2. Graphical Method

3 Cramer's Rule

INTRODUCTION TO SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

- System is defined as a group of entity or objects, real or abstract, comprising a whole with each and every component/element interacting or related to one another. For example, solar system, blood system and computer system.
- Mathematically, system of linear equations is a collection of linear equations involving the same set of variables

INTRODUCTION (Cont.)

System of linear equations is written as

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m} x_{n}=b_{n}
\end{gathered}
$$

INTRODUCTION (Cont.)

It can be written in matrix form as

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

where

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Numerical Methods
by Norhayati Rosli
http://ocw.ump.edu.my/course/view.php?id=449

INTRODUCTION (Cont.)

INTRODUCTION (Cont.)

Solving Small Number of Equations

GRAPHICAL METHOD

- The graphical method is suitable to be applied to a linear algebraic system of two equations.
- These equations are plotting on Cartesian Coordinate.
- Each equation represents a straight line.
- The intersection point provides the solution to the corresponding unknown.
- For two equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

- Solve both equations for x_{2} yields

$$
\begin{aligned}
& x_{2}=-\left(\frac{a_{11}}{a_{12}}\right) x_{1}+\frac{b_{1}}{a_{12}} \Rightarrow x_{2}=(\text { slope }) x_{1}+\text { intercept } \\
& x_{2}=-\left(\frac{a_{21}}{a_{22}}\right) x_{1}+\frac{b_{2}}{a_{22}}
\end{aligned}
$$

GRAPHICAL METHOD (Cont.)

Example 1

Use the graphical method to solve the following equations

$$
\begin{aligned}
& x_{1}+2 x_{2}=7 \\
& -2 x_{1}+3 x_{2}=7
\end{aligned}
$$

Solution

Solve both equations for x_{2} :

$$
\begin{aligned}
& x_{2}=-\frac{1}{2} x_{1}+\frac{7}{2} \\
& x_{2}=\frac{2}{3} x_{1}+\frac{7}{3}
\end{aligned}
$$

GRAPHICAL METHOD (Cont.)

Solution (Cont.)

Plot the two equations on Cartesian coordinate:

The solution is given by the intersection point of the two lines, $x_{1}=1$ and $x_{2}=3$.

GRAPHICAL METHOD (Cont.)

Given the two lines L_{1} and L_{2}, one and only one of the following may occur:

- If L_{1} and L_{2} intersect at exactly one point, there is a unique solution. The lines cross at only one point.
- If L_{1} and L_{2} are parallel and coincident, there is an infinitely many solutions.
- If L_{1} and L_{2} are almost parallel, the system is ill-conditioned. The point of intersection is difficult to detect visually due to the slopes are closed.
- If L_{1} and L_{2} are parallel and distinct, there is no solution.

GRAPHICAL METHOD (Cont.)

Example 2

Determine the nature of the solution for the following system of linear equations

$$
\begin{aligned}
& x_{1}-3 x_{2}=3 \\
& 3 x_{1}-9 x_{2}=5
\end{aligned}
$$

Solution

GRAPHICAL METHOD (Cont.)

Example 3

Determine the nature of the solution for the following system of linear equations

$$
\begin{aligned}
& x_{1}-3 x_{2}=3 \\
& 3 x_{1}-x_{2}=9
\end{aligned}
$$

GRAPHICAL METHOD (Cont.)

Example 4

Determine the nature of the solution for the following system of linear equations

$$
\begin{aligned}
& x_{1}-3 x_{2}=3 \\
& 0.35 x_{1}-x_{2}=1.1015
\end{aligned}
$$

Solution

ill-conditioned

GRAPHICAL METHOD (Cont.)

Example 5

Determine the nature of the solution for the following system of linear equations

$$
\begin{aligned}
& x_{1}-3 x_{2}=3 \\
& 2 x_{1}-6 x_{2}=6
\end{aligned}
$$

Solution

Many solutions

CRAMER'S RULE

Definition

Cramer's rule states that each unknown in a system of linear equations may be expressed as a fraction of two determinants. The denominator, D is a determinant of A matrix. The numerator, D_{n} is obtained by replacing the column of the coefficients of the unknown by the vector \boldsymbol{b}.

CRAMER'S RULE (Cont.)

Determinant for small dimension of matrices

CRAMER’S RULE (Cont.)

For 3×3 matrices, the Cramer's rule are:

$$
x_{1}=\frac{\left|\begin{array}{lll}
b_{1} & a_{12} & a_{13} \\
b_{2} & a_{22} & a_{23} \\
b_{3} & a_{32} & a_{33}
\end{array}\right|}{\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|}, \quad x_{2}=\frac{\left|\begin{array}{lll}
a_{11} & b_{1} & a_{13} \\
a_{21} & b_{2} & a_{23} \\
a_{31} & b_{3} & a_{33}
\end{array}\right|}{\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|}, \quad x_{3}=\frac{\left|\begin{array}{lll}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & b_{3}
\end{array}\right|}{\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|}
$$

CRAMER'S RULE (Cont.)

Example 5

Given the system of linear equations

$$
\begin{aligned}
& x_{1}+3 x_{2}-x_{3}=-8 \\
& 2 x_{1}-x_{2}+3 x_{3}=13 \\
& 3 x_{1}+2 x_{2}-x_{3}=-4
\end{aligned}
$$

a) Transform the above system into a matrix form of $\mathbf{A x}=\mathbf{b}$.
b) Compute x_{1}, x_{2} and x_{3} by using Cramer's rule.

Solution

a)

$$
\left[\begin{array}{ccc}
1 & 3 & -1 \\
2 & -1 & 3 \\
3 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-8 \\
13 \\
-4
\end{array}\right]
$$

CRAMER’S RULE (Cont.)

Solution (Cont.)

b) Find the determinant of the matrix \mathbf{A}

$$
D=|\mathbf{A}|=\left|\begin{array}{ccc}
1 & 3 & -1 \\
2 & -1 & 3 \\
3 & 2 & -1
\end{array}\right|=(1)\left|\begin{array}{cc}
-1 & 3 \\
2 & -1
\end{array}\right|-3\left|\begin{array}{cc}
2 & 3 \\
3 & -1
\end{array}\right|+(-1)\left|\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right|=21
$$

Find the determinants of D_{1}, D_{2} and D_{3} by replacing the first, second and third column in \mathbf{A} with \mathbf{b}.

$$
D_{1}=\left|\begin{array}{ccc}
-8 & 3 & -1 \\
13 & -1 & 3 \\
-4 & 2 & -1
\end{array}\right|=(-8)\left|\begin{array}{cc}
-1 & 3 \\
2 & -1
\end{array}\right|-3\left|\begin{array}{cc}
13 & 3 \\
-4 & -1
\end{array}\right|+(-1)\left|\begin{array}{cc}
13 & -1 \\
-4 & 2
\end{array}\right|=21
$$

CRAMER'S RULE (Cont.)

Solution (Cont.)

$$
\begin{aligned}
& D_{2}=\left|\begin{array}{ccc}
1 & -8 & -1 \\
2 & 13 & 3 \\
3 & -4 & -1
\end{array}\right|=(1)\left|\begin{array}{cc}
13 & 3 \\
-4 & -1
\end{array}\right|-(-8)\left|\begin{array}{cc}
2 & 3 \\
3 & -1
\end{array}\right|+(-1)\left|\begin{array}{cc}
2 & 13 \\
-4 & -4
\end{array}\right|=-42 \\
& D_{3}=\left|\begin{array}{ccc}
1 & 3 & -8 \\
2 & -1 & 13 \\
3 & 2 & -4
\end{array}\right|=(1)\left|\begin{array}{cc}
-1 & 13 \\
2 & -4
\end{array}\right|-3\left|\begin{array}{cc}
2 & 13 \\
3 & -4
\end{array}\right|+(-8)\left|\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right|=63 \\
& x_{1}=\frac{21}{21}=1, \quad x_{2}=\frac{-42}{21}=-2, \quad x_{3}=\frac{63}{21}=3
\end{aligned}
$$

Therefore, $x_{1}=1, x_{2}=-2, x_{3}=3$.

Conclusion

- Graphical method is applicable for system with two equations only.
- Cramer's rule are suitable to solve 3×3 system.
- However, the difficulty arise in Cramer's rule when the dimension of the matrix is high as one needs to compute the determinant of the matrix. PAHANG

Author Information

$$
\begin{aligned}
& \text { Norhayati Binti Rosli, } \\
& \text { Senior Lecturer, } \\
& \text { Applied \& Industrial Mathematics Research } \\
& \text { Group, } \\
& \text { Fakulti Sains \& Teknologi Industri, } \\
& \text { Universiti Malaysia Pahang, } \\
& \text { 26300 Gambang, , Pahang. } \\
& \text { SCOPUS ID: } 36603244300 \\
& \text { UMPIR ID: } 3449 \\
& \text { Google } \\
& \text { Scholars: } \text { https://scholar.google.com/citations } \\
& \text { ?user=SLoPW9oAAAAJ\&hl=en } \\
& \text { e-mail: } \text { norhayati@ump.edu.my }
\end{aligned}
$$

