## 2. Roots of Equations

Nadirah Binti Mohd Nasir<br>Lecturer<br>Fakulti Sains \& Teknologi Industri,<br>Universiti Malaysia Pahang,<br>26300, Gambang, Pahang.<br>e-mail-nadirah@ump.edu.my

### 2.1 Exercises

## Exercises: Graphical and Incremental Search Methods

Exercise 2.1 Given $f(x)=x^{2}-6.45 x+9.15$ for $1 \leq x \leq 5$.
i. Plot and determine those subintervals which contain root of the function, $f(x)$.
ii. Using incremental search method, divide the interval into eight subintervals and find those subintervals that contain root of the function, $f(x)$.

Exercise 2.2 Given $f(x)=x^{2}-\sin (x)-1.4$ for $0 \leq x \leq 3.5$.
i. Plot and determine those subintervals which contain root of the function, $f(x)$.
ii. Using incremental search method, divide the interval into seven subintervals and find those subintervals that contain root of the function, $f(x)$.

## Exercises: Bisection Method

Exercise 2.3 Determine the real root of $f(x)=x^{3}-3 x^{2}+x+6$ using three iterations of the bisection method with initial guesses of $x_{l}=-2.0$ and $x_{u}=-0.9$. If the true root is $x=-1.0946$, calculate true percent relative error and approximate percent relative error for each iteration.

Exercise 2.4 Determine the first positive root of $x^{2} \sin (x)=1.4$ by using bisection method with initial guesses of $x_{l}=1.0$ and $x_{u}=1.5$. Perform the calculation until the stopping criterion, $\varepsilon_{s}=5 \%$.
(Use radian mode in your calculator)

Exercise 2.5 Determine the root of $2=0.5 x^{3}-\sqrt[3]{x}$ by using bisection method. Given the initial guesses are $1,2,3$ and 4 . Decide the best lower and upper bound that bracket the root. Hence, carry out the computation until $\varepsilon_{a}<10 \%$.

## Exercises: False Position Method

Exercise 2.6 Determine the first real root of $f(x)=-x^{2}-5 x+4$ using false position method with initial guesses of $x_{l}=-7.5, x_{u}=-5$ and stopping criterion, $\varepsilon_{s}=0.5 \%$. If the true root is $x=-5.7016$, calculate the true percent relative error and approximate percent relative error for each iteration.

Exercise 2.7 Find the positive root of $f(x)=\exp (-x)(3.2 \sin (x)-0.5 \cos (x))$ using false position method with initial guesses of $x_{l}=3$ and $x_{u}=4$. Perform your calculation until four iterations.
(Use radian mode in your calculator)

Exercise 2.8 The concentration of pollutant bacteria, $c$ in a lake decreases can be formulate as

$$
c=75 \exp (-1.5 t)+20 \exp (-0.075 t)
$$

Determine the time required for the bacteria concentration to be reduced to 15 using false position method with an initial guess of $t_{l}=2.5 \mathrm{~s}$ and $t_{u}=5.5 \mathrm{~s}$. Calculate until $\varepsilon_{a}<4 \%$.

Exercise 2.9 Water is discharged from a reservoir through a long pipe. By neglecting the change in the level of the reservoir, the transient velocity, $v(t)$ of the water flowing from the pipe at time, $t$ is given by

$$
v(t)=\sqrt{2 g h}+\frac{t}{2 L} \cos (2 g h)
$$

where $h$ is the height of the fluid in the reservoir, $L$ is the length of the pipe and $g=9.81 \mathrm{~ms}^{-2}$ is the gravity. Find the value of $h$ that is required to achieve a velocity of $v=4 \mathrm{~ms}^{-1}$ at time $t=4 \mathrm{~s}$, when $L=5 \mathrm{~m}$. Use false position method for the calculation with the initial height is $h_{l}=0.55 \mathrm{~m}$ and $h_{u}=1.15 \mathrm{~m}$. Perform the computation until three iterations and calculate approximate percent relative error in each iteration.
(Use radian in your calculator)

## Exercises: Newton Raphson Method

Exercise 2.10 Determine the root of

$$
f(x)=10.5 x^{2}-1.5 x-5
$$

### 2.1 Exercises

by using Newton Raphson method with $x_{0}=0$ and perform the iterations until $\varepsilon_{a}<1.00 \%$. Compute $\varepsilon_{t}$ for each approximation if given the true root is $x=0.7652$.

Exercise 2.11 Determine the root of $f(x)=10 \exp (-x) \cos (x)+9$ by using the Newton Raphson method with three iterations and $x_{0}=-0.5$.

Exercise 2.12 Compute three iterations of Newton Raphson method to find the root of the following equations
i. $f(x)=x^{3}-x-1$ with $x_{0}=2.5$.
ii. $f(x)=\sin (2 x)-\cos (x)-x^{2}-1$ with $x_{0}=2.0$.
iii. $x \exp (x)=2$ with $x_{0}=0.55$.

Exercise 2.13 Suppose a company must supply $N$ units/month at a uniform rate. Assume the storage cost/unit is $S_{1}$ dollars/month and that setup cost is $S_{2}$ dollars. Further assume that production is at a uniform rate of $m$ units/month and $x$ be the number of items produced each run. The total average cost per month is expressed by

$$
C=\frac{S_{1}}{2}\left(1-\frac{N}{m}\right) x+\frac{S_{2} N}{x}
$$

Assume that the storage cost/unit is $S_{1}=25$ dollars/month, setup cost is $S_{2}=520$ dollars, the production $m=100$ units/month and a company must supply $N=10$ units/month. If the total average cost per month is minimize, that is $C=1625 \sin (x)$, find the number of items being produced for each run by using three iterations of Newton Raphson method. Let initial guess, $x_{0}=10$.
-

## Exercises: Secant Method

Exercise 2.14 Use secant method to estimate the root of

$$
f(x)=-x^{2}-6.45 x+9.15
$$

Start with initial estimates $x_{-1}=-10$ and $x_{0}=-9$. Perform the computation until $\varepsilon_{a}<1 \%$. Calculate true percent relative error in each iteration if given true root is $x=-7.6466$.

Exercise 2.15 Use secant method to estimate the root of

$$
f(x)=\exp (-x)-x^{2}
$$

Start with initial estimates $x_{-1}=1.25$ and $x_{0}=1.4$. Perform the computation until $\varepsilon_{a}<5 \%$.

Exercise 2.16 Use secant method to estimate the root of

$$
\ln \left(\frac{x}{2}\right)+\frac{1}{5} x^{2}=2
$$

Perform the three iterations with initial estimates $x_{-1}=4.0$ and $x_{0}=4.5$.

References 1. Chapra, C. S. \& Canale, R. P. Numerical Methods for Engineers, Sixth Edition, McGraw-Hill, 2010.

