1. Introduction to Numerical Methods

Nadirah Binti Mohd Nasir Lecturer Fakulti Sains & Teknologi Industri, Universiti Malaysia Pahang, 26300, Gambang, Pahang. e-mail–nadirah@ump.edu.my

1.1 Exercises

Exercises: Errors

Exercise 1.1 If x = 2 is approximated by $\overline{x} = 1.94$, find the true error and relative error.

Exercise 1.2 If $x = \pi$ is approximated by $\overline{x} = \frac{3}{7}$, find the actual error and the relative percent error.

Exercise 1.3 If x = 0.76 inches and the relative error of an approximation is known to be 0.04, find the possible values for \bar{x} .

Exercise 1.4 If x = 186.4 and the relative error of an approximation is known to be 0.0001, find the possible values for \overline{x} .

Exercises: Taylor's series

Exercise 1.5 Given a function f(x) = sin(x). Compute the following Taylor's polynomial at x = 0 by truncating

i. Second terms, third terms and fourth terms.

ii. If the above Taylor's polynomial is used to approximates $sin(27^\circ)$, then find the true error E_t

of each of these approximations

Exercise 1.6 Find the second and fourth order Taylor's polynomial by truncating the second and fifth terms, centered at $x = x_0$, for each of the following functions **i.** $f(x) = e^x$, $x_0 = 1$ **ii.** $f(x) = x^{\frac{1}{3}}$, $x_0 = 5$

Exercise 1.7 Using the Maclaurin expansion of e^x and e^{-x} , find the second order Maclaurin expansion, $P_2(x)$ of **i.** $\sinh(x)$ where $\sinh(x) = \frac{1}{2}(e^x - e^{-x})$ **ii.** $\cosh(x)$ where $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$

Exercise 1.8 Show that the Taylor's expansion of $\ln(1-x)$ about x = 0 is $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}-x^n}{n}$

References 1. Chapra, C. S. & Canale, R. P. Numerical Methods for Engineers, Sixth Edition, McGraw–Hill, 2010.

