

FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY TEST 2

COURSE	:	ORDINARY	DIFFERENTIAL E	QUATIONS
COURSE CODE	:	BUM2133		
LECTURER	:	SAMSUDIN BIN ABDULLAH NOR AIDA ZURAIMI BINTI MD NOAR NOR ALISA BINTI MOHD DAMANHURI LAILA AMERA BINTI AZIZ NURFATIHAH BTE MOHAMAD HANAFI		
DATE	:			
DURATION	:	1 HOUR & 3	60 MINUTES	
NAME :			QUESTION	MARKS
			1	
I.D. NUMBER:			2	
			3	
			4	
			TOTAL MARKS	
				50

INSTRUCTIONS TO CANDIDATES

COURSE

This question paper consists of **FOUR** questions. Answer all questions. 1.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

This examination paper consists of TEN (10) printed pages including the front page

QUESTION 1

Use the method of undetermined coefficients to solve the Euler equation

$$x^{2} \frac{d^{2} y}{dx^{2}} + 3x \frac{dy}{dx} - 8y = \ln^{3} x - \ln x.$$

(12 Marks)

QUESTION 2

(a) Use the second shift theorem to find the Laplace transforms of $u(t)e^{2t} \sinh 3t$

(6 Marks)

(b) Use the Laplace transforms of integral to find the Laplace transforms of

$$\int_{0}^{t} u \cos 2u \ du$$

(7 Marks)

QUESTION 3

(a) Find the inverse of the Laplace transforms of

$$\frac{s^2 + 9s + 22}{(s-1)(s+3)^2}$$

(8 Marks)

(b) Use the convolution theorem to find the inverse of Laplace transforms of

$$\frac{4}{s^2-9}$$

(7 Marks)

QUESTION 4

Use Laplace transforms to solve the equation

$$\frac{d^2x}{dt^2} + \frac{dx}{dt} - 2x = 1, x(0) = 1, x'(0) = 0$$

(10 Marks)

END OF QUESTION PAPER

APPENDIX

		APPENDIX				
Euler	$_{2}d^{2}y$, dy					
Equation	$ax^{2}\frac{d^{2}y}{dx^{2}} + bx\frac{dy}{dx} + cy = f(x)$					
	$x = e^t$, $t = \ln x$, $a\frac{d^2y}{dt^2} + (b-a)\frac{dy}{dt} + cy = f(e^t)$					
Laplace	f(t)					
Transforms	J (t)	$F(s) = \int_{0}^{\infty} f(t)e^{-st}dt$				
	а	a				
		<u></u>				
	t^n	n				
	ı	$\frac{n!}{s^{n+1}}, n=1,2,3,$				
	e^{at}	$\frac{1}{a}$				
	ain at	s-a				
	sin at	$\frac{a}{2}$				
	222	$\overline{s^2 + a^2}$				
	cos at	$\frac{s}{s^2 + a^2}$				
		$s^2 + a^2$				
	sinh at	$\frac{a}{s^2-a^2}$				
		s^2-a^2				
	cosh at	$\frac{s}{s^2-a^2}$				
		s^2-a^2				
	Given	: $\mathcal{L}{f(t)} = F(s)$ and $\mathcal{L}{g(t)} = G(s)$				
	Linearity : $\mathcal{L}\{\alpha f(t) + \beta g(t)\} = \alpha F(s) + \beta G(s)$					
	First Shift Theorem : $\mathcal{L}\left\{e^{-at}f(t)\right\} = F(s+a)$					
	Second Shift Theorem : $\mathcal{L}\{u(t-a)f(t-a)\}=e^{-as}F(s)$					
	Derivative of t-transform: $\mathcal{L}\left\{t^n f(t)\right\} = (-1)^n \frac{d^n F(s)}{ds^n}; n = 1,2,3,$					
	Laplace of Integral : $\mathcal{L}\left\{\int_{0}^{t} f(u)du\right\} = \frac{F(s)}{s}$ Convolution Theorem : $\mathcal{L}^{-1}\left\{F(s)G(s)\right\} = \int_{0}^{t} f(t-u)g(u)du$					
Laplace Transforms of	$\mathcal{L}\left\{\frac{dy}{dt}\right\} = sY(s) - y(0)$					
Derivatives	$\mathcal{L}\left\{\frac{d^2y}{dt^2}\right\} = s^2Y(s) - sy(0) - y'(0)$					