

BFF1113 Engineering Materials

DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

Course Guidelines:

- 1. Introduction to Engineering Materials
- 2. Bonding and Properties
- 3. Crystal Structures & Properties
- 4. Imperfection in Solids
- 5. Mechanical Properties of Materials
- 6. Physical Properties of Materials
- 7. Failure & Fundamental of Fracture
- 8. Metal Alloys
- 9. Phase Diagram
- 10. Phase Transformation Heat Treatment
- 11. Processing and Application of Metals
- 12. Ceramic Materials
- 13. Polymer Materials
- 14. Composite Materials
- 15. Corrosion & Degradation of Materials
- 16. Environment and Sustainability

COMPOSITE

Chapter Outline

- 1. Introduction
- 2. Matrix Phase
 - a) Metal-matrix Composites
 - b) Ceramic-matrix Composites
 - c) Polymer-matrix Composite
- 3. Reinforcement Phase
 - a) particle reinforced composite
 - b) fiber reinforced composite
 - c) structural-reinforced composite
- 4. Composite Applications
- 5. Composites Production Methods

ISSUES TO ADDRESS...

- What is composite material?
- Why are composites used instead of metals, ceramics, or polymers?
- What are some typical applications of composite materials?

- Combine materials with the objective of getting a more desirable combination of properties
 - Ex: get flexibility & weight of a polymer plus the strength of a ceramic
- Principle of combined action
 Mixture gives "averaged" properties

Composite Benefits CMCs: Increased toughness PMCs: Increased E/ρ Specific ceramics Force particle-reinf 103 E(GPa) PMCs fiber-reinf 10 metal/ metal alloys un-reinf .1 G=3*E*/8 .01 Bend displacement 3 10 30 Density, ρ [mg/m³] 10-4 6061 AI ^εss (s⁻¹) MMCs: 10-6 Increased creep 10-8 6061 AI resistance w/SiC

whiskers

-50

20 30

10 - 1

σ(MPa)

100 200

6

Matrix Materials

- Matrix in reinforced plastics has 3 principal functions:
- 1. Support the fibers in place and transfer the stresses to them
- 2. Protect the fibers against physical damage and the environment
- 3. Reduce the propagation of cracks in the composite
- Matrix materials are *thermoplastics* or *thermosets*

Reinforced Material

- Mechanical and physical properties of reinforced plastics depend on:
- 1. Type, shape, and orientation of the reinforcing material
- 2. Length of the fibers
- 3. Volume fraction (percentage) of the reinforcing material

Terminology/Classification

• Matrix:

- -- The continuous phase
- -- Purpose is to:
 - transfer stress to other phases
 - protect phases from environment

-- Classification: MMC, CMC, PMC

metal

ceramic polymer

Dispersed phase:

Purpose: enhance matrix properties.
 MMC: increase σ_y, *TS*, creep resist.
 CMC: increase *Kc* PMC: increase *E*, σ_y, *TS*, creep resist.
 Classification: Particle, fiber, structural

Metal-matrix Composites

- Advantages of a *metal matrix* (over a *polymer matrix*) are higher elastic modulus, toughness, ductility and higher resistance
- Limitations: higher density and a greater difficulty in processing parts

Fiber	Matrix	Applications
Graphite	Aluminum	Satellite, missile, and helicopter structures
	Magnesium	Space and satellite structures
	Lead	Storage-battery plates
	Copper	Electrical contacts and bearings
Boron	Aluminom	Compressor blades and structural supports
	Magnesium	Antenna structures
	Titanium	Jet-engine fan blades
Alumina	Aluminum	Superconductor restraints in fission
		power reactors
	Lead	Storage-battery plates
	Magnesium	Helicopter transmission structures
Silicon carbide	Aluminum, titanium	High-temperature structures
	Superalloy (cobalt base)	High-temperature engine components
Molybdenum, tungsten	Superalloy	High-temperature engine components

EXAMPLE:

Aluminum-matrix Composite Brake Calipers

• Aluminum-matrix composite brake caliper using nano-crystalline alumina fiber reinforcement

Summary of Fiber and Material Properties for an Automotive Brake Caliper

Property	Alumina fiber	Aluminum-reinforced composite material
Tensile strength	3100 MPa	1.5 GPa
Elastic modulus	380 GPa	270 GPa
Density	3.9 g/cm^3	3.48 g/cm^3

Ceramic-matrix Composites

- *Ceramic-matrix composites* (CMC) are resistance to high temperatures and corrosive environments
- Ceramics are strong and stiff, they resist high temperatures, but they lack toughness
- Carbon/carbon-matrix composites retain much of their strength but lack oxidation resistance at high temperatures
- Used for automotive engine components

Polymer-matrix Composite (PMC)

- Also known as Reinforced plastics or fiber reinforced plastics (FRP)
- Glass, carbon, ceramics, aramids, and boron are the common reinforcing fibers
- When more than one type of fiber is used in a reinforced plastic, it is called a **hybrid**
 - Have better properties but are more costly

Reinforcement Phase

Universiti Malaysia

PAHÁNG

Glass Fibers

- Least expensive of all fibers
- Composite material is called **glass-fiber reinforced plastic (GFRP)**

Carbon Fibers

- More expensive, low density, high strength and high stiffness
- Product is called **carbon-fiber reinforced plastic (CFRP)**
- Difference between *carbon* and *graphite* depends on the material purity and processed temperature
- Classified by their elastic modulus: *low, intermediate, high,* and *very high modulus*
- All carbon fibers are made by **pyrolysis** of organic **precursors**
- Pyrolysis is the process of inducing chemical changes by heat

Conductive Graphite Fibers

Enhance the electrical and thermal conductivity of reinforced plastic components

Ceramic Fibers

• Have low elongation, low thermal conductivity and good chemical resistance

Polymer Fibers

- Fibers may be made of nylon, rayon, acrylics, or aramids, most common are **aramid fibers**
- Aramids, such as **Kevlar**, are tough and have very high specific strength

Boron Fibers

- Fibers consist of boron deposited onto tungsten or carbon fibers
- High strength and stiffness in tension and compression and resistance to high temperatures
- Due to high density of tungsten, they are heavy and expensive

Other Fibers

- Whiskers used as reinforcing fibers, they are tiny needle-like single crystals
- High aspect ratios (ratio of fiber length to its diameter)
- Small size and free of imperfections / high crystal perfection –extremely strong, strongest known very expensive
- Ex: graphite, SiN, SiC

Fiber Size and Length

- Fibers are classified:
 - **1.** Short (discontinuous)
 - 2. Long (continuous)

Note: Better overall composite properties are realized when the fiber distribution is uniform

Influence of fiber length

Critical fiber length for effective stiffening & strengthening:

Fiber length increase-reinforcement active • Why? Longer fibers carry stress more efficiently!

When $l > 15l_c$

- Physical properties of reinforced plastics depend on the type and amount of reinforcement
- Weak interfacial bonding causes **fiber pullout** and **delamination** of the structure
- Glass fibers are treated with **silane** for improved wetting and bonding

Highest stiffness and strength in reinforced plastics are when the fibers are aligned in the direction of the tension force.

Strength and Elastic Modulus of Reinforced Plastics

• Total load, P_c, on the composite is

$$P_c = P_f + P_m$$
 $P_f = \text{fibre load}$
 $P_m = \text{matrix load}$

• Which can be written as

$$\sigma_c A_c = \sigma_f A_f + \sigma_m A_m$$

• Using x to represents the volume fraction,

$$\sigma_c = x\sigma_f + (1 - x)\sigma_m$$

• Elastic modulus of the composite is

$$E_c = xE_f + (1-x)E_m$$

EXAMPLE

Calculation of Stiffness of a Composite and Load Supported by Fibers

Assume that a graphite–epoxy reinforced plastic with longitudinal fibers contains 20% graphite fibers. The elastic modulus of the fibers is 300 GPa, and that of the epoxy matrix is 100 GPa. Calculate the elastic modulus of the composite

Solution

We have

 $E_c = 0.2(300) + (1 - 0.2)(100) = 140 \text{ GPa}$

Applications of Reinforced Plastics

- Glass or carbon fiber reinforced hybrid plastics are for hightemperature applications
- Reinforced plastics is used for weight reduction in product design

Section A-A

Applications of Reinforced Plastics

EXAMPLE

Composite Military Helmets and Body Armor

• Body armor uses layers of woven fibers

Laminar composite:

- composed of 2 dimensional sheet which are stack and cemented--stacking sequence
- benefit: balanced, in-plane stiffness

Sandwich panels:

- consist of 2 outer sheets (strong material) that are separated by thicker core (lightweight and low elastic modulus materials)
- low density, honeycomb core
- benefit: small weight, large bending stiffness

Composite Production Methods 1

Pultrusion

- Continuous fibers impregnated in resin
- pulled through steel die to preform desired shape
- followed by passing through curing die (precision machined). This die is heated to cure the resin matrix.
- A pulling device draws the stock through die

https://www.youtube.com/watch?v=aXq1hrz ne2k

Universiti Malaysia PAHANG

Composite Production Methods-II

Filament Winding

Continuous fiber accurately positioned in predetermined pattern to form hollow shape

siti sia JG

- The fiber are fed through resin bath and then continuously wound onto a mandrel using automated winding equipment
- 🔯 Curing in oven
- Removal of mandrel

