

UNIVERSITI MALAYSIA PAHANG

ORDINARY DIFFERENTIAL EQUATIONS BUM2133

QUESTION NO.	MARKS
1	
2	
3	
TOTAL	

Ordinary Differential Equations by Nor Aida Zuraimi bt Md Noar <u>http://ocw.ump.edu.my/course/view.php?id=446</u>

SUBJECT: ORDINARY DIFFERENTIAL EQUATIONS		ry differential equations	MARKS:
Universiti Malaysia PAHANG	CODE:	TOPIC: CHAPTER 1, 2, 3	
FACULTY OF INDUSTRIAL	ASSESSMENT: ASSIGNMENT	DUE/DURATION:	/50
SCIENCES & TECHNOLOGY			

QUESTION 1

An object of mass *m* moving in a viscous medium with resistive force that is proportional to velocity -Rv which satisfies the differential equation below:

$$m\frac{dv}{dt} = -Rv$$

where m = 2kg, R = 1.2Ns/m and initial velocity is 100m/s.

- (a) What type of first order differential equation that satisfies the equation above?
- (b) Find its general solution.
- (c) By using Microsoft Excel, complete the data in **Table 1**.
- (d) Plot in the same graph (time vs velocity) for the exact data and estimate data.
- (e) Give your comment based on the result you get from (c) and (d).

t (s)	Exact velocity	Estimate velocity
0	100	
0.01	99.4000	
0.02	98.8036	
0.03	98.2108	
0.04	97.6215	
0.05	97.0358	
0.06	96.4536	
0.07	95.8748	
0.08	95.2996	
0.09	94.7278	
0.1	94.1504	

Table 1: The velocity of object as a function of time.

QUESTION 2

Find the solution of an undamped system governed by

$$m\frac{d^2y}{dt^2} + ky = 5\sin\frac{\omega}{2}t$$

Where $\omega = \sqrt{\frac{k}{m}}$ and he initial conditions $y(0) = 0$ and $y'(0) = 0$.

QUESTION 3

Tank T_1 and T_2 initially contain 100*gal* of water each. In T_1 the water is pure, whereas 50*lb* of fertilizer are dissolved in T_2 . By circulating liquid at a rate of $1gal/\min$ and stirring (to keep the mixture uniform) the amount of fertilizer $y_1(t)$ in T_1 and $y_2(t)$ in T_2 in change with time *t*. The mixing problem can be modeled by the system of first-order differential equations below.

$$\begin{pmatrix} y'_1 \\ y'_2 \end{pmatrix} = \begin{pmatrix} -0.01 & 0.01 \\ 0.01 & -0.01 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

At time t = 0, $y_1 = 0$ and $y_2 = 50$. Find the particular solution of $y_1(t)$ and $y_2(t)$ using the Laplace Transform method.

