PART A: Determine whether each of these statements is \mathbf{T} (True) or \mathbf{F} (False)

(a)	Let $A = \{x, y\}$. Given that $R_1 = \{(x, y), (y, x)\}$, then R_1 is transitive
(b)	$R_2 = \{(a,b) a-b=0\}$ is reflexive
(c)	If $f(x) = 3x$ and $g(x) = x^2$, then $(g+f)(x) = x(3+x)$
(d)	A bijective function is not onto
(e)	Given that if x , then y is false. Then x is false
(f)	Let A be a statement. Thus, $A = \neg(\neg A)$
(g)	$\exists x \in \mathbb{R}, x^2 > 0$ is true
(h)	Modus tollens is a syllogism of affirming
(i)	A binary relation R , is transitive if $(a, c) \in R$ and $(b, c) \in R$, then $(a, c) \in R$
(j)	Theorem is a statement that can be shown to be false
	(10 marks)

PART B Question 2

(a) Let
$$f : \mathbb{R} \to \mathbb{R}$$
, where $f(x) = \frac{5x}{7}$ and $g(x) = 7x - 5$.

- (i) Determine $(g \circ f)(x)$.
- (ii) Prove that $(g \circ f)(x)$ is one-to-one.
- (iii) Then, determine $(g \circ f)^{-1}(x)$

(7 marks)

(b) Determine whether $(p \leftrightarrow q) \lor r \equiv (p \rightarrow q) \land (r \rightarrow p)$

(8 marks)

Question 3

(a) Let a binary relation $R = \{(a, b) | b - a = 0\}$, where $a, b \in \mathbb{Z}$. Determine whether R is symmetric and justify your answer.

(3 marks)

(b) Let $x, y \in \mathbb{Z}$. Determine the truth value of $\forall x, \exists y$, such that $x + y \leq x - y$. Give reason to support your answer by determining the value of y.

(3 marks)

- (c) Given a series of integers.
 - (i) By using the principle of mathematical induction, prove that $\forall k \geq 1$,

$$1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(ii) Then, determine the sum of $1^2 + 2^2 + 3^2 + ... + 50^2$.

(9 marks)

END OF QUESTION