PART A: Determine whether each of these statements is \mathbf{T} (True) or \mathbf{F} (False)
(a) Let $A=\{x, y\}$. Given that $R_{1}=\{(x, y),(y, x)\}$, then R_{1} is transitive.........
(b) $R_{2}=\{(a, b) \mid a-b=0\}$ is reflexive. \qquad
\square
(c) If $f(x)=3 x$ and $g(x)=x^{2}$, then $(g+f)(x)=x(3+x)$ \qquad
\square
(d) A bijective function is not onto \qquad
\square
(e) Given that if x, then y is false. Then x is false \qquad
\square
(f) Let A be a statement. Thus, $A=\neg(\neg A)$ \qquad
\square
(g) $\exists x \in \mathbb{R}, x^{2}>0$ is true \qquad \square
(h) Modus tollens is a syllogism of affirming \qquad
\square
(i) A binary relation R, is transitive if $(a, c) \in R$ and $(b, c) \in R$, then $(a, c) \in R \square$
(j) Theorem is a statement that can be shown to be false. \qquad

PART B

Question 2

(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$, where $f(x)=\frac{5 x}{7}$ and $g(x)=7 x-5$.
(i) Determine $(g \circ f)(x)$.
(ii) Prove that $(g \circ f)(x)$ is one-to-one.
(iii) Then, determine $(g \circ f)^{-1}(x)$
(b) Determine whether $(p \leftrightarrow q) \vee r \equiv(p \rightarrow q) \wedge(r \rightarrow p)$

Question 3

(a) Let a binary relation $R=\{(a, b) \mid b-a=0\}$, where $a, b \in \mathbb{Z}$. Determine whether R is symmetric and justify your answer.
(b) Let $x, y \in \mathbb{Z}$. Determine the truth value of $\forall x, \exists y$, such that $x+y \leq x-y$. Give reason to support your answer by determining the value of y.
(3 marks)
(c) Given a series of integers.
(i) By using the principle of mathematical induction, prove that $\forall k \geq 1$,

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(ii) Then, determine the sum of $1^{2}+2^{2}+3^{2}+\ldots+50^{2}$.

END OF QUESTION

