DISCRETE MATHIEMATICS AND APPLICATIONS

Abstract Algebra 2

Mohd Sham Mohamad (mohdsham@ump.edu.my)
Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my)
Faculty of Industrial Sciences \& Technology

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Chapter Description

Chapter Outline

5.3 Semigroups and Monoid
5.4 Subgroups
5.5 Cyclic Groups

Aims

- Define extra properties semigroup and monoid.
- Define extra properties for subgroups.
- Define extra properties for cyclic groups

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

References

1. Rosen K.H., Discrete Mathematics \& Its Applications, (Seventh Edition), McGraw-Hill, 2011
2. Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
3. Ram Rabu, Discrete Mathematics, Pearson, 2012
4. Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
5. Chandrasekaren, N. \& Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, 2015

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Semigroup \& Monoid

Definition (Semigroup)

Let G be a nonempty set with a binary operation ${ }^{*} . G$ is a semigroup under operation * and in which the multiplication operation is associative.

Definition (Monoid)

A monoid is a semigroup that has identity element for the binary operation.

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Semigroup \& Monoid: Example

(1) \mathbb{R} is a semigroup under the binary operation + , since + is associative.
(2) \mathbb{R} is also a semigroup under multiplication.
(3) \mathbb{R} is not a semigroup under subtraction.
(4) \mathbb{R}^{n} is a semigroup under + . More generally, any vector space V is a semigroup under vector addition + .
(5) \mathbb{R}^{3} has another binary operation, the cross product \times i.e. $\left(\mathbb{R}^{3}, \times\right)$ is not a semigroup

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Subgroup

If a subset H of a group G is itself a group under the same operation as in G, we say H is a subgroup of G.

We use the notation $H \leq G$ to mean H is a subgroup of G. If we want to indicate that H is a subgroup of G, but not equal to G itself, we write $H<G$.

Some terminologies:
proper subgroup - a subgroup H when $H<G$ is called a proper subgroup.
trivial subgroup - the subgroup $\{e\}$ is called the trivial subgroup of G
nontrivial subgroup - a subgroup H when $H \neq\{e\}$ is called a nontrivial subgroup of G.

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Subgroup Test

Theorem (One-Step Subgroup Test)

Let G be a group and H a nonempty subset of G. Then, H is a subgroup of G if
H is closed under multiplication (i.e. $a b^{-1} \in H$ whenever $a, b \in H$).

Theorem (Two-Step Subgroup Test)

Let G be a group and H a nonempty subset of G. Then, H is a subgroup of G if

1. $a b \in H$ whenever $a, b \in H$ (H is closed under multiplication).
2. $\quad a^{-1} \in H$ whenever $a \in H$ (each element in H has an inverse).

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Subgroup Test: Example 1

Let G be an Abelian group with the identity e. Then $H=\left\{x \in G \mid x^{2}=e\right\}$ is a subgroup of G.

Proof

1. Since $e^{2}=e$, then $e \in H$. Thus $H \neq \phi$.
2. Let $a, b \in H$ which give $a^{2}=b^{2}=e$. We must show that $a b^{-1} \in H$.

$$
\begin{aligned}
\left(a b^{-1}\right)^{2} & =a b^{-1} a b^{-1} \\
& =(a a)\left(b^{-1} b^{-1}\right) \\
& =a^{2}\left(b^{2}\right)^{-1} \\
& =e e^{-1} \\
& =e
\end{aligned}
$$

This gives $a b^{-1} \in H$.
We can also define a subgroup H where elements in H are generated by any element of group G.

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Cyclic Subgroup

Let $a \in G$. Then $\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\}=\left\{e, a, a^{2}, a^{3}, \ldots\right\}$ is called a cyclic subgroup of G generated by a.

1. Let $G=U(8)=\{1,3,5,7\}$. All cyclic subgroups of G are listed as follows:

$$
\langle 1\rangle=\{1\} \quad, \quad\langle 3\rangle=\{3,1\} \quad, \quad\langle 5\rangle=\{5,1\} \quad, \quad\langle 7\rangle=\{7,1\} .
$$

2. Let $G=U(5)=\{1,2,3,4\}$. All cyclic subgroups of G are listed as follows:

$$
\langle 1\rangle=\{1\} \quad, \quad\langle 2\rangle=\{2,4,3,1\} \quad, \quad\langle 3\rangle=\{3,4,2,1\} \quad, \quad\langle 4\rangle=\{4,1\}
$$

Note that $U(5)=\langle 2\rangle=\langle 3\rangle$.

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Centre \& Centralizer

Definition (Center of a Group)

The center $Z(G)=\{a \in G \mid a x=x a, \forall x \in G\}$ of a group G which is the set of elements in G that commute with every element of G.

Definition (Centralizer of \boldsymbol{a} in G)

Let a be a fixed element of a group G. The centralizer of a in $G, C_{G}(a)=\{g \in G \mid g a=a g\}$ which is the set of all elements in G that commute with a.

Note that $Z(G)=\bigcap_{a \in G} C_{G}(a)$.

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Centre \& Centralizer: Example 1

Let $G=\{1, a, b, c, d, e\}$ and the multiplication table is given as follows:

\bullet	1	a	b	c	d	e
1	1	a	b	c	d	e
a	a	b	1	e	c	d
b	b	1	a	d	e	c
c	c	d	e	1	a	b
d	d	e	c	b	1	a
e	e	c	d	b	a	1

Thus,
$C_{G}(1)=G, \quad C_{G}(a)=\{1, a, b\}, \quad C_{G}(b)=\{1, a, b\}, \quad C_{G}(d)=\{1, d, e\}, \quad C_{G}(e)=\{1, c, d, e\}$, and $Z(G)=\bigcap_{a \in G} C_{G}(a)=\{1\}$.

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Cyclic Group

A group G is called cyclic if there is an element a in G such that $G=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$.
Such an element a is called a generator of G.

Example:

Let $G=U(5)=\{1,2,3,4\}$. All cyclic subgroups of G are listed as follows:

$$
\langle 1\rangle=\{1\} \quad, \quad\langle 2\rangle=\{2,4,3,1\} \quad, \quad\langle 3\rangle=\{3,4,2,1\} \quad, \quad\langle 4\rangle=\{4,1\}
$$

Since $U(5)=\langle 2\rangle=\langle 3\rangle$, thus $U(5)$ is a cyclic group.

Cyclic Group: Example 1

Let $G=U(8)=\{1,3,5,7\}$. All cyclic subgroups of G are listed as follows:

$$
\langle 1\rangle=\{1\} \quad, \quad\langle 3\rangle=\{3,1\} \quad, \quad\langle 5\rangle=\{5,1\} \quad, \quad\langle 7\rangle=\{7,1\} .
$$

Thus, $U(8)$ is not cyclic group since there is no generator.

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Cyclic Group: Example 2

Let $G=\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$. All cyclic subgroups of G are listed as follows:

$$
\begin{aligned}
& \langle 0\rangle=\{0\} \quad, \quad\langle 1\rangle=\{1,2,3,4,5\} \quad, \quad\langle 2\rangle=\{2,4,0\} \quad, \quad\langle 3\rangle=\{3,0\} \\
& \langle 4\rangle=\{4,2,0\} \quad, \quad\langle 5\rangle=\{5,4,3,2,1,0\}
\end{aligned}
$$

Since $\mathbb{Z}_{6}=\langle 1\rangle=\langle 5\rangle$, thus $U(5)$ is a cyclic group.
*Note that, for any $G=\mathbb{Z}_{n}$, the generator are any $a<n$ and relatively prime with n. i.e. $\operatorname{gcd}(a, n)=1$

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

