

# DISCRETE MATHEMATICS AND APPLICATIONS

# **Abstract Algebra 2**

Mohd Sham Mohamad (mohdsham@ump.edu.my) Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my)

**Faculty of Industrial Sciences & Technology** 



### **Chapter Description**

### **Chapter Outline**

- 5.3 Semigroups and Monoid
- 5.4 Subgroups
- 5.5 Cyclic Groups

### Aims

- Define extra properties semigroup and monoid.
- Define extra properties for subgroups.
- Define extra properties for cyclic groups



### References

- 1. Rosen K.H., Discrete Mathematics & Its Applications, (Seventh Edition), McGraw-Hill, 2011
- 2. Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
- 3. Ram Rabu, Discrete Mathematics, Pearson, 2012
- Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
- 5. Chandrasekaren, N. & Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, 2015



## Semigroup & Monoid

### **Definition (Semigroup)**

Let *G* be a nonempty set with a binary operation \*. *G* is a semigroup under operation \* and in which the multiplication operation is associative.

### **Definition (Monoid)**

A monoid is a semigroup that has identity element for the binary operation.



## Semigroup & Monoid: Example

- (1)  $\mathbb{R}$  is a semigroup under the binary operation +, since + is associative.
- (2)  $\mathbb{R}$  is also a semigroup under multiplication.
- (3)  $\mathbb{R}$  is not a semigroup under subtraction.
- (4)  $\mathbb{R}^n$  is a semigroup under +. More generally, any vector space V is a semigroup under vector addition +.
- (5)  $\mathbb{R}^3$  has another binary operation, the cross product  $\times$  i.e.  $(\mathbb{R}^3, \times)$  is not a semigroup



# Subgroup

If a subset H of a group G is itself a group under the same operation as in G, we say H is a subgroup of G.

We use the notation  $H \le G$  to mean *H* is a subgroup of *G*. If we want to indicate that *H* is a subgroup of *G*, but not equal to *G* itself, we write H < G.

#### Some terminologies:

**proper subgroup** – a subgroup *H* when H < G is called a proper subgroup. **trivial subgroup** - the subgroup  $\{e\}$  is called the trivial subgroup of *G* **nontrivial subgroup** - a subgroup *H* when  $H \neq \{e\}$  is called a nontrivial subgroup of *G*.



## Subgroup Test

### **Theorem (One-Step Subgroup Test)**

Let *G* be a group and *H* a nonempty subset of *G*. Then, *H* is a subgroup of *G* if *H* is closed under multiplication (i.e.  $ab^{-1} \in H$  whenever  $a, b \in H$ ).

### **Theorem (Two-Step Subgroup Test)**

Let G be a group and H a nonempty subset of G. Then, H is a subgroup of G if

- 1.  $ab \in H$  whenever  $a, b \in H$  (*H* is closed under multiplication).
- 2.  $a^{-1} \in H$  whenever  $a \in H$  (each element in *H* has an inverse).



### Subgroup Test: Example 1

Let *G* be an Abelian group with the identity *e*. Then  $H = \{x \in G | x^2 = e\}$  is a subgroup of *G*.

#### Proof

- 1. Since  $e^2 = e$ , then  $e \in H$ . Thus  $H \neq \phi$ .
- 2. Let  $a, b \in H$  which give  $a^2 = b^2 = e$ . We must show that  $ab^{-1} \in H$ .

$$(ab^{-1})^2 = ab^{-1}ab^{-1}$$
  
=  $(aa)(b^{-1}b^{-1})$   
=  $a^2(b^2)^{-1}$   
=  $ee^{-1}$   
=  $e$ 

This gives  $ab^{-1} \in H$ .

We can also define a subgroup H where elements in H are generated by any element of group G.



### Cyclic Subgroup

Let  $a \in G$ . Then  $\langle a \rangle = \{a^n | n \in \mathbb{Z}\} = \{e, a, a^2, a^3, ...\}$  is called a cyclic subgroup of *G* generated by *a*.

1. Let  $G = U(8) = \{1, 3, 5, 7\}$ . All cyclic subgroups of G are listed as follows:  $\langle 1 \rangle = \{1\}$ ,  $\langle 3 \rangle = \{3, 1\}$ ,  $\langle 5 \rangle = \{5, 1\}$ ,  $\langle 7 \rangle = \{7, 1\}$ .

2. Let  $G = U(5) = \{1, 2, 3, 4\}$ . All cyclic subgroups of G are listed as follows:  $\langle 1 \rangle = \{1\}$ ,  $\langle 2 \rangle = \{2, 4, 3, 1\}$ ,  $\langle 3 \rangle = \{3, 4, 2, 1\}$ ,  $\langle 4 \rangle = \{4, 1\}$ 

Note that  $U(5) = \langle 2 \rangle = \langle 3 \rangle$ .



### Centre & Centralizer

### **Definition (Center of a Group)**

The center  $Z(G) = \{a \in G | ax = xa, \forall x \in G\}$  of a group *G* which is the set of elements in *G* that commute with every element of *G*.

#### **Definition (Centralizer of** *a* **in G)**

Let *a* be a fixed element of a group *G*. The centralizer of *a* in *G*,  $C_G(a) = \{g \in G | ga = ag\}$ 

which is the set of all elements in G that commute with a.

Note that  $Z(G) = \bigcap_{a \in G} C_G(a)$ .



### Centre & Centralizer: Example 1

Let  $G = \{1, a, b, c, d, e\}$  and the multiplication table is given as follows:

| • | 1 | а | b | С | d | е |
|---|---|---|---|---|---|---|
| 1 | 1 | а | b | С | d | е |
| а | а | b | 1 | е | С | d |
| b | b | 1 | а | d | е | С |
| С | С | d | е | 1 | а | b |
| d | d | e | С | b | 1 | a |
| e | e | С | d | b | a | 1 |

Thus,

$$C_{G}(1) = G, \quad C_{G}(a) = \{1, a, b\}, \quad C_{G}(b) = \{1, a, b\}, \quad C_{G}(d) = \{1, d, e\}, \quad C_{G}(e) = \{1, c, d, e\},$$
  
and  $Z(G) = \bigcap_{a \in G} C_{G}(a) = \{1\}.$ 



## Cyclic Group

A group *G* is called cyclic if there is an element *a* in *G* such that  $G = \{a^n | n \in \mathbb{Z}\}$ . Such an element *a* is called a *generator* of *G*.

#### **Example:**

Let  $G = U(5) = \{1, 2, 3, 4\}$ . All cyclic subgroups of G are listed as follows:  $\langle 1 \rangle = \{1\}$ ,  $\langle 2 \rangle = \{2, 4, 3, 1\}$ ,  $\langle 3 \rangle = \{3, 4, 2, 1\}$ ,  $\langle 4 \rangle = \{4, 1\}$ Since  $U(5) = \langle 2 \rangle = \langle 3 \rangle$ , thus U(5) is a cyclic group.



### Cyclic Group: Example 1

Let  $G = U(8) = \{1, 3, 5, 7\}$ . All cyclic subgroups of G are listed as follows:

$$\langle 1 \rangle = \{1\}$$
,  $\langle 3 \rangle = \{3,1\}$ ,  $\langle 5 \rangle = \{5,1\}$ ,  $\langle 7 \rangle = \{7,1\}$ .

Thus, U(8) is not cyclic group since there is no generator.



### Cyclic Group: Example 2

Let  $G = \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ . All cyclic subgroups of *G* are listed as follows:

$$\langle 0 \rangle = \{0\}$$
,  $\langle 1 \rangle = \{1, 2, 3, 4, 5\}$ ,  $\langle 2 \rangle = \{2, 4, 0\}$ ,  $\langle 3 \rangle = \{3, 0\}$   
 $\langle 4 \rangle = \{4, 2, 0\}$ ,  $\langle 5 \rangle = \{5, 4, 3, 2, 1, 0\}$ 

Since  $\mathbb{Z}_6 = \langle 1 \rangle = \langle 5 \rangle$ , thus U(5) is a cyclic group.

\*Note that, for any  $G = \mathbb{Z}_n$ , the generator are any a < n and relatively prime with *n*. i.e. gcd(a, n) = 1

