

DISCRETE MATHEMATICS AND APPLICATIONS

Abstract Algebra 1

Mohd Sham Mohamad (mohdsham@ump.edu.my) Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my)

Faculty of Industrial Sciences & Technology

Chapter Description

Chapter Outline

5.1 Groups5.2 Abelian Group

Aims

- Define properties of a group .
- Define extra properties for abelian group

References

- 1. Rosen K.H., Discrete Mathematics & Its Applications, (Seventh Edition), McGraw-Hill, 2011
- 2. Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
- 3. Ram Rabu, Discrete Mathematics, Pearson, 2012
- Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
- 5. Chandrasekaren, N. & Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, 2015

Binary Operation

Definition (Binary Operation)

A binary operation on a non-empty set *A* is a map $f: A \times A \rightarrow A$ such that

- (i) f is defined for every pair of elements in A
- (ii) f uniquely associates each pair of elements in A to some element of Ai.e. $f:(a,b) \rightarrow a * b = c \in A$, $\forall a, b \in A$

Group: Definition

<u> Definition (Group)</u>

Let *G* be a nonempty set with a binary operation * . *G* is a group if **closed under operation** * and satisfies the following properties:

(i) Associativity

(a*b)*c = a*(b*c), $\forall a,b,c \in G$

(ii) Identity

There exist a unique identity $e \in G$ such that a * e = e * a = a, $\forall a \in G$

(iii) Inverse

 $\forall a \in G$ there exist a unique $b \in G$ such that a * b = b * a = e (denote as $b = a^{-1}$)

Group: Example 1

The set of integers \mathbb{Z} , the set of rational numbers \mathbb{Q} and the set of real numbers \mathbb{R} are all groups under ordinary addition.

- **Closed Operation**: Addition Closed
- Associative

(a+b)+c=a+(b+c), $\forall a,b,c \in G$ by properties of addition in \mathbb{Z} , \mathbb{Q} and \mathbb{R} .

Identity

There exist a unique identity $0 \in G$ such that a + 0 = 0 + a = a, $\forall a \in G$.

Inverse

 $\forall a \in G$ there exist a unique $b \in G$ such that a + (-a) = (-a) + a = 0

Group: Example 2

The set of positive rational numbers \mathbb{Q}^+ under multiplication is a group.

- **Closed Operation**: Multiplication Closed
- Associative `

(ab)c = a(bc), $\forall a, b, c \in G$ by properties of multiplication \mathbb{R} .

Identity

There exist a unique identity $1 \in G$ such that $a_1 = 1a = a$, $\forall a \in G$.

Inverse

 $\forall a \in G \text{ there exist a unique } b = \frac{1}{a} \in G \text{ such that } a\left(\frac{1}{a}\right) = \left(\frac{1}{a}\right)a = 1$ Adam Shariff Adli Aminuddin
Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Group: Example 3

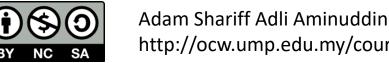
The subset $\{1, -1, i, -i\}$ of the complex numbers is a group under complex multiplication.

- Closed Operation: Multiplication
 Closed (Multiplication Table)
- Associative

 $(ab)c = a(bc), \forall a, b, c \in G$

since commutative ab = ba.

- Identity: There exist a unique identity $1 \in G$ such that a1 = 1a = a, $\forall a \in G$.
- **Inverse:** $1^{-1} = 1, (-1)^{-1} = -1, i^{-1} = i, (-i)^{-1} = i$.



http://ocw.ump.edu.my/course/view.php?id=443

*	1	-1	i	—i
1	1	-1	i	—i
-1	-1	1	—i	i
i	i	—i	-1	1
—i	—i	i	1	-1

Commutative

Let *G* be a group with a binary operation *. Two elements *g* and *h* of a group *G* is said to be commutative if g * h = h * g.

Example

C

1. Let $3, 4 \in \mathbb{Z}_{10}$. Then, 3+4=7=4+3 which means 3 and 4 are commutative.

2.
$$\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix} \in GL(2, \mathbb{R}). \text{ Then}$$
$$\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 9 \\ 10 & 12 \end{bmatrix} \neq \begin{bmatrix} 8 & 10 \\ 9 & 12 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} \text{ which means}$$
$$\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix} \text{ are not commutative.}$$
Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Abelian Group

Definition (Abelian Group)

Let G be a group with a binary operation *.

A group G is **abelian** if a * b = b * a, $\forall a, b \in G$.

Example:
$$GL(2,\mathbb{R})$$
 is not abelian group since $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix} \neq \begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$.

Abelian Group: Example 1

Consider $\mathbb{Z}_4 = \{0, 1, 2, 3\}$. The Cayley table for \mathbb{Z}_4 is given as follows:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

 \mathbb{Z}_4 is abelian group since a+b=b+a, $\forall a,b\in\mathbb{Z}_4$.

Abelian Group: Example 2

 $U(n) = \{$ All positive integers greater than or equal to 1, relatively prime to *n* and less than *n* $\}$

$$U(5) = \{1, 2, 3, 4\}$$

$$U(8) = \{1, 3, 5, 7\}$$

•	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

U(5) and U(8) are abelian groups.

