## DISCRETE MATHIEMATICS AND APPLICATIONS

## Proof Techniques 1

Mohd Sham Mohamad (mohdsham@ump.edu.my)
Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my)
Faculty of Industrial Sciences \& Technology

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

## Chapter Description

## Chapter Outline

4.1 Direct Proof
4.2 Indirect Proof
4.3 Contradiction Method

## Aims

- Apply direct method to prove a theorem
- Apply indirect method to prove a theorem
- Apply contradiction method to prove a theorem

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

## References

1. Rosen K.H., Discrete Mathematics \& Its Applications, (Seventh Edition), McGraw-Hill, 2011
2. Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
3. Ram Rabu, Discrete Mathematics, Pearson, 2012
4. Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
5. Chandrasekaren, N. \& Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, 2015

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

## Basic Terms

## TERM

## DESCRIPTION

Theorem A theorem is a statement that can be shown to be true. Theorems can also be referred as facts or results.

| Proof | A proof is a valid argument that established the truth of a <br> theorem. A proof can include axioms (or postulate), which are <br> statements we assume to be true. |
| :--- | :--- |
| Proposition | Less important theorems sometimes are called propositions. |
| Lemma | A lemma is a less important theorem that is helpful in the proof of <br> other result. |
| Corollary | A corollary is a theorem that can be established directly from a <br> theorem that has been proved. |
| Conjecture | A conjecture is a statement that is being proposed to be a true <br> statement. |

## ODD and EVEN

7 is odd since there exist 3
such that $7=2(3)+1$

## $n$ is ODD if:

$\exists k \in \mathbb{Z}$ э $n=2 k+1$

## $n$ is EVEN if:

$\exists k \in \mathbb{Z}$ э $n=2 k$

100 is even since there exist
50 such that $100=2(50)$

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

## Methods of Proof

To prove the theorem given in implication (if $p$ then $q, p \rightarrow q$ ), we have three methods of proof:


Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

## Method 1: Direct Method

$\square$ Assume the results (theorem etc.) are given in implication proposition logic (if $p$ then $q, p \rightarrow q$ )
$\square$ Direct method needs us to assume $p$ is true and shows that $q$ is true.

## Example:

## Prove that if $x$ is even, then $x^{2}$ is even.

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

## Direct Method: Example 1

## Prove that if $x$ is even, then $x^{2}$ is even.

## Proof:

$>$ Let

$$
p: x \text { even } \quad q: x^{2} \text { even } .
$$

$>$ Assume that $x$ is even is true. Need to prove that $x^{2}$ is even.
$>$ Since $x$ is even, $x=2 k, k \in \mathbb{Z}$.
Then

$$
x^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)=2 m \quad(m=2 k \in \mathbb{Z})
$$

$>$ Therefore $x^{2}$ is even.

## Direct Method: Example 2

## Prove that if $x$ and $y$ are odd, then $x+y$ is even.

## Proof:

Let $p: x, y$ odd and $q: x+y$ even.

- Assume that $x$ and $y$ are odd is true. Need to prove that $x+y$ is even.
- Since $x$ and $y$ are odd, then

$$
x=2 k+1, y=2 l+1 \text { where } k, l \in \mathbb{Z} .
$$

- Thus, $\quad x+y=(2 k+1)+(2 l+1)=2(k+l+1)=2 m$
where $m=k+l+1 \in \mathbb{Z}$.
Therefore $x+y$ is even.


## Direct Method: Example 3 (i)

## Prove that if $a$ and $b$ are both perfect squares integer, then $a b$ is also a perfect square integer.

## Proof:

Let $p$ : $\quad a$ and $b$ are both perfect squares integer $q$ : $a b$ is also a perfect square integer.
$\square$ Assume that $a$ and $b$ are both perfect squares integer is true.
$\square$ Need to prove that $a b$ is also a perfect square integer.
$\square$ Since $a$ is perfect squares integer, then $\exists x \ni a=x^{2}$ where $x \in \mathbb{Z}$.
Since $b$ is perfect squares integer, then $\exists y \ni b=y^{2}$ where $x \in \mathbb{Z}$.

## Direct Method: Example 3 (ii)

## Proof:

* Let $p$ : $\quad a$ and $b$ are both perfect squares integer
$q$ : $a b$ is also a perfect square integer.
* Assume that $a$ and $b$ are both perfect squares integer is true.
* Need to prove that $a b$ is also a perfect square integer.
* Since $\underline{a}$ is perfect squares integer, then $\exists x \ni a=x^{2}$ where $x \in \mathbb{Z}$.

* Then $a b=x^{2} y^{2}=(x y)^{2}=z^{2}$ where $z=x y \in \mathbb{Z}$
* Therefore $a b$ is also a perfect square integer.

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

## Method 2: Indirect Method

* It is also known as contrapositive method.
* Contrapositive of implication $p \rightarrow q$ is $\sim q \rightarrow \sim p$.
* By true table we can show that $p \rightarrow q \equiv \sim q \rightarrow \sim p$.
* Thus, if it is difficult to prove $p \rightarrow q$ by using direct method, we can rewrite and proof by contrapositive $\sim q \rightarrow \sim p$ since both are equivalent proposition.

By using indirect method, we need to
(i) assume $\sim q$ is true,
(ii) shows that $\sim p$ is true.

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

## Indirect Method: Example 1

## Prove that if $x^{2}$ is odd, then $x$ is odd

## Proof:

Let $p: x^{2}$ odd and $q: x$ odd.

- By contrapositive method,
$\sim q: x$ is even and $\sim p: x^{2}$ is even.
- Assume that $x$ is even is true. Need to prove that $x^{2}$ is even.

The proof follows Example 3

## Indirect Method: Example 2 (i)

Give an indirect proof of the theorem
"If $5 n+2$ is odd, then $n$ is odd" where $n$ is an integer.

## Proof:

$\boldsymbol{\text { Let }}$

$$
p: 5 n+2 \text { is odd } \quad \text { and } \quad q: n \text { odd. }
$$

$\Rightarrow$ By contrapositive method,

$$
\sim q: n \text { is even } \quad \text { and } \quad \sim p: 5 n+2 \text { is even. }
$$

$\Rightarrow$ Assume that $n$ is even is true. Need to prove that $5 n+2$ is even.

## Indirect Method: Example 2 (ii)

## Proof (cont.):

$\Rightarrow$ Let $n=2 k, k \in \mathbb{Z}$.
$\Rightarrow$ Then

$$
\begin{aligned}
5 n+2 & =5(2 k)+2 \\
& =10 k+2 \\
& =2(5 k+1) \\
& =2 l \quad \text { where } \quad l=5 k+1 \in \mathbb{Z}
\end{aligned}
$$

$\Rightarrow$ Therefore, $5 n+2$ is even.
$\rightarrow$ Equivalently shows that if $5 n+2$ is odd, then $n$ is odd. $■$

## Method 3: Contradiction Method

- Prove $p \rightarrow q$ is true.
- Assume $\boldsymbol{p}$ and $\boldsymbol{\sim}^{\sim} \boldsymbol{q}$ are true ( $p \rightarrow \boldsymbol{\sim}^{\sim} \mathbf{q}$ is true) and show that $\boldsymbol{q}$ must also be true.

Example:
If $n^{2} \equiv 1(\bmod 2)$, then $n$ is an odd integer

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

## Contradiction Method: Example 1 (i)

Give a proof by contradiction of the theorem

$$
\text { "If } 5 n+2 \text { is odd, then } n \text { is odd". }
$$

## Proof:

$\rightarrow$ Let $p: 5 n+2$ is odd and $q: n$ is odd
$\rightarrow$ Assume $p \rightarrow \sim q$ is true, which mean if $5 n+2$ is odd then $n$ is even.
$\rightarrow$ Let $n=2 k, k \in \mathbb{Z}$. Then

$$
\begin{aligned}
5 n+2 & =5(2 k)+2 \\
& =10 k+2 \\
& =2(5 k+1) \\
& =2 l \text { where } l=5 k+1 \in \mathbb{Z} \\
& \text { even }(\rightarrow \leftarrow) \text {-contradiction }
\end{aligned}
$$

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

## Contradiction Method: Example 1 (ii)

## Proof:

Let $p: 5 n+2$ is odd and $q: n$ is odd
Assume $p \rightarrow \sim q$ is true, which mean if $5 n+2$ is odd then $n$ is even.
$\rightarrow$ Let $n=2 k, k \in \mathbb{Z}$. Then $\quad 5 n+2=5(2 k)+2$

$$
\begin{aligned}
& =10 k+2 \\
& =2(5 k+1)
\end{aligned}
$$

$$
=2 l \text { where } l=5 k+1 \in \mathbb{Z}
$$

$$
\text { even }(\rightarrow \leftarrow) \text {-contradiction }
$$

$\rightarrow$ Which is contradiction with our assumption that $5 n+2$ is odd.
$\rightarrow$ Thus, if $5 n+2$ is odd, then $n$ is odd is true.

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

## Contradiction Method: Example 2 (i)

Give a proof by contradiction of the theorem "If $n^{2} \equiv 1(\bmod 2)$, then $n$ is an odd integer".

## Proof:

Let $\quad p: n^{2} \equiv 1(\bmod 2)$ and $q: n$ is odd integer

Assume $p \rightarrow \sim q$ is true, which mean if $n^{2} \equiv 1(\bmod 2)$ is odd then $n$ is even integer.

Let $n=2 k, k \in \mathbb{Z}$. Then $n^{2}=(2 k)^{2}$

$$
=2\left(2 k^{2}\right)
$$



$$
\equiv 0(\bmod 2) \quad(\rightarrow \leftarrow) \text {-contradiction }
$$

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

## Contradiction Method: Example 2 (ii)

## Proof:

Let $p: n^{2} \equiv 1(\bmod 2)$
and $q: n$ is odd integer
Assume $p \rightarrow \sim q$ is true, which mean if $n^{2} \equiv 1(\bmod 2)$ is odd then $n$ is even integer.

Let $n=2 k, k \in \mathbb{Z}$. Then $n^{2}=(2 k)^{2}$

$$
=2\left(2 k^{2}\right)
$$

$$
\equiv 0(\bmod 2) \quad(\rightarrow \leftarrow) \text {-contradiction }
$$

Which is contradiction with our assumption that $n^{2} \equiv 1(\bmod 2)$.
4Thus, if $n^{2} \equiv 1(\bmod 2)$, then $n$ is an odd integer is true.

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

