

DISCRETE MATHEMATICS AND APPLICATIONS

Proof Techniques 1

Mohd Sham Mohamad (mohdsham@ump.edu.my) Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my)

Faculty of Industrial Sciences & Technology

Chapter Description

Chapter Outline

- 4.1 Direct Proof
- 4.2 Indirect Proof
- 4.3 Contradiction Method

Aims

- Apply direct method to prove a theorem
- Apply indirect method to prove a theorem
- Apply contradiction method to prove a theorem

References

- 1. Rosen K.H., Discrete Mathematics & Its Applications, (Seventh Edition), McGraw-Hill, 2011
- 2. Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
- 3. Ram Rabu, Discrete Mathematics, Pearson, 2012
- Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
- 5. Chandrasekaren, N. & Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, 2015

Basic Terms

	TERM	DESCRIPTION
	Theorem	A theorem is a statement that can be shown to be true. Theorems
		can also be referred as facts or results.
	Proof	A proof is a valid argument that established the truth of a
		theorem. A proof can include axioms (or postulate), which are
		statements we assume to be true.
	Proposition	Less important theorems sometimes are called propositions.
	Lemma	A lemma is a less important theorem that is helpful in the proof of other result.
	Corollary	A corollary is a theorem that can be established directly from a
		theorem that has been proved.
	Conjecture	A conjecture is a statement that is being proposed to be a true
		statement.
	BY NC SA	http://ocw.ump.edu.my/course/view.php?id=443

ODD and **EVEN**

7 is odd since there exist 3 such that 7=2(3)+1

n is ODD if: $\exists k \in \mathbb{Z} \ni n = 2k+1$

n is EVEN if: $\exists k \in \mathbb{Z} \ni n = 2k$

100 is even since there exist 50 such that 100=2(50)

Methods of Proof

To prove the theorem given in implication (if p then $q, p \rightarrow q$), we have three methods of proof:

Method 1: Direct Method

□ Assume the results (theorem etc.) are given in implication proposition logic (if *p* then *q*, $p \rightarrow q$)

Direct method needs us to assume p is true and shows that q is true.

Example:

Prove that if x is even, then x^2 is even.

Direct Method: Example 1

Prove that if x is even, then x^2 is even.

Proof:

≻ Let

$$p: x \text{ even}$$
 $q: x^2 \text{ even}$

Assume that x is even is true. Need to prove that x^2 is even.

Since x is even,
$$x = 2k, k \in \mathbb{Z}$$

Then

c

$$x^{2} = (2k)^{2} = 4k^{2} = 2(2k^{2}) = 2m \quad (m = 2k \in \mathbb{Z})$$

> Therefore x^2 is even.

Direct Method: Example 2

Prove that if x and y are odd, then x+y is even.

Proof:

- Let p: x, y odd and q: x + y even.
- Assume that x and y are odd is true. Need to prove that x + y is even.

Since *x* and *y* are odd, then

$$x = 2k+1, y = 2l+1$$
 where $k, l \in \mathbb{Z}$.

Thus, x + y = (2k+1) + (2l+1) = 2(k+l+1) = 2m

```
where m = k + l + 1 \in \mathbb{Z}.
```

Therefore x + y is even.

Direct Method: Example 3 (i)

Prove that if *a* and *b* are both perfect squares integer, then *ab* is also a perfect square integer.

Proof:

SA

NC

- □ Let *p*: *a* and *b* are both perfect squares integer
 - q: ab is also a perfect square integer.
- Assume that *a* and *b* are both perfect squares integer is true.
- □ Need to prove that *ab* is also a perfect square integer.
- □ Since *a* is perfect squares integer, then $\exists x \ni a = x^2$ where $x \in \mathbb{Z}$.

□ Since *b* is perfect squares integer, then $\exists y \ni b = y^2$ where $x \in \mathbb{Z}$.

nttp://ocw.ump.eau.my/course/view.pnp?ia=443

Direct Method: Example 3 (ii)

Proof:

- Let p: a and b are both perfect squares integer
 - q: *ab* is also a perfect square integer.
- Assume that a and b are both perfect squares integer is true.
- Need to prove that *ab* is also a perfect square integer.
- Since <u>a is perfect squares integer</u>, then $\exists x \ni a = x^2$ where $x \in \mathbb{Z}$.
- Since <u>b is perfect squares</u> integer, then $\exists y \ni b = y^2$ where $x \in \mathbb{Z}$.

Then
$$ab = x^2y^2 = (xy)^2 = z^2$$
 where $z = xy \in \mathbb{Z}$

Therefore *ab* is also a perfect square integer.

Method 2: Indirect Method

- It is also known as contrapositive method.
- Contrapositive of implication $p \to q$ is $\sim q \to \sim p$.
- By true table we can show that $p \rightarrow q \equiv \sim q \rightarrow \sim p$.
- Thus, if it is difficult to prove $p \rightarrow q$ by using direct method, we can rewrite and proof by contrapositive $\sim q \rightarrow \sim p$ since both are equivalent proposition.

By using indirect method, we need to

- (i) assume $\sim q$ is true,
 - shows that $\sim p$ is true.

(ii)

Indirect Method: Example 1

Prove that if x^2 is odd, then x is odd

Indirect Method: Example 2 (i)

Give an indirect proof of the theorem "If 5*n*+2 is odd, then *n* is odd" where *n* is an integer.

Proof:

Let

SA

p:5n+2 is odd and q:n odd.

By contrapositive method,

 $\sim q:n$ is even and $\sim p:5n+2$ is even.

Assume that *n* is even is true. Need to prove that 5n+2 is even.

nup.//ocw.ump.cuu.my/course/view.pnp:nu=++5

Indirect Method: Example 2 (ii)

Proof (cont.):

Let
$$n = 2k, k \in \mathbb{Z}$$
.
Then
 $5n+2 = 5(2k) + 2$
 $= 10k + 2$
 $= 2(5k + 1)$

= 2l where $l = 5k + 1 \in \mathbb{Z}$

Therefore, 5n+2 is even. Equivalently shows that if 5n+2 is odd, then *n* is odd.

Method 3: Contradiction Method

• Prove $p \rightarrow q$ is true.

◆ Assume p and ~q are true (p→~q is true) and show that q must also be true.

If $n^2 \equiv 1 \pmod{2}$, then *n* is an odd integer

Contradiction Method: Example 1 (i)

Give a proof by contradiction of the theorem "If 5n+2 is odd, then *n* is odd".

Proof:

 \downarrow Let p: 5n+2 is odd and q: n is odd

 \Rightarrow Assume $p \rightarrow \sim q$ is true, which mean if (5n+2) is odd then *n* is even.

Let
$$n = 2k$$
, $k \in \mathbb{Z}$. Then $5n+2 = 5(2k)+2$
= $10k+2$
= $2(5k+1)$
= $2l$ where $l = 5k+1 \in \mathbb{Z}$
even (→←)-contradiction

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443 tradiction

Contradiction Method: Example 1 (ii)

Proof:

◆Let p: 5n+2 is odd and q: n is odd
◆Assume $p \rightarrow q$ is true, which mean if 5n+2 is odd then n is even.
◆Let $n = 2k, k \in \mathbb{Z}$. Then 5n+2=5(2k)+2 =10k+2 =2(5k+1) =2(5k+1) =2l where $l=5k+1 \in \mathbb{Z}$ even($\rightarrow \leftarrow$)-contradiction

 \rightarrow Which is contradiction with our assumption that 5n+2 is odd.

→ Thus, if 5n+2 is odd, then *n* is odd is true.

Contradiction Method: Example 2 (i)

Give a proof by contradiction of the theorem "If $n^2 \equiv 1 \pmod{2}$, then *n* is an odd integer".

Proof:

Let
$$p: n^2 \equiv 1 \pmod{2}$$
 and $q: n$ is odd integer
Assume $p \rightarrow q$ is true, which mean if $n^2 \equiv 1 \pmod{2}$ is odd then
 n is even integer.
Let $n = 2k, k \in \mathbb{Z}$. Then $n^2 = (2k)^2$
 $= 2(2k^2)$
 $\equiv 0 \pmod{2}$ ($\rightarrow \leftarrow$)-contradiction
Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Contradiction Method: Example 2 (ii)

Proof:

Let p: n² ≡ 1(mod 2) and q: n is odd integer
Assume p →~ q is true, which mean if n² ≡ 1(mod 2) is odd then n is even integer.
Let n = 2k, k ∈ Z. Then n² = (2k)² = 2(2k²) = 2(2k²) (→←)-contradiction

Which is contradiction with our assumption that $n^2 \equiv 1 \pmod{2}$.

 $\stackrel{\bullet}{\Rightarrow}$ Thus, if $n^2 \equiv 1 \pmod{2}$, then *n* is an odd integer is true.

