DISCRETE MATHIEMATICS AND APPLICATIONS

Relations

Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my)
Mohd Sham Mohamad (mohdsham@ump.edu.my)

Faculty of Industrial Sciences \& Technology

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Chapter Description

- Chapter outline
2.8 Relations and Their Properties

Reflexive
Symmetric
Transitive

- Aims
- Determine whether a relation is reflexive, symmetric or transitive

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

References

- Rosen K.H., Discrete Mathematics \& Its Applications, (Seventh Edition), McGraw-Hill, 2011
- Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
- Ram Rabu, Discrete Mathematics, Pearson, 2012
- Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
- Chandrasekaren, N. \& Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, 2015

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Binary relation (i)

Definition: Let A and B be sets. A binary relation, R between A and B is a collection of ordered pairs of element in A and elements in B.

A binary relation is a subset of Cartesian product, $R \subseteq A \times B$.
The ordered pair, $\left(a_{n}, b_{n}\right)$ is a subset of $R,\left(a_{n}, b_{n}\right) \subseteq R$.
If a binary relation of set A only, it is a subset of Cartesian product of $R \subseteq A \times A$.

Binary relation (ii)

Example 1

Let $A=(a, b, c)$ and $B=(1,2)$.
The Cartesian product of $A \times B=\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\}$
A binary collection, R can be represented as $R=\{(a, 1),(b, 2),(c, 1),(c, 2)\}$.
*Note that $R \subseteq A \times B$, thus it is not compulsory for R to contain all elements of $A \times B$.
*Note that a function can be represented as a relation.

Binary relation (iii)

A relation can also be represented like a 'function' or graphically. For this example $R=\{(a, 1),(b, 2),(c, 1),(c, 2)\}$.

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Binary relation (iv)

Let $A=\{1,2,3\}$. What are the ordered pairs such that $R=\{(a, b) \mid a \geq b\}$?

Answer:

This relation is from A to A.
The number elements in A is 3 and the total ordered pair is $2^{3}=8$.
All of the ordered pairs of $A=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$.
However, the ordered pair which satisfy $a \geq b$ is
$R=\{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)\}$.

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Properties of Relations

There are three basic types of binary relation properties which are:

1. Reflexive
2. Symmetric or antisymmetric
3. Transitive

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Reflexive (i)

Definition: A binary relation, R is reflexive if $(a, a) \in R, \forall a \in A$.
It is reflexive is there is an ordered pair of the same elements for all elements.

Reflexive (ii)

Let $A=\{1,2,3\}$. Determine whether these relations are reflexive.

1. $R_{1}=\{(1,1),(2,1),(1,2)\}$
2. $R_{2}=\{(1,1),(1,2),(2,2),(3,2),(3,3)\}$
3. $R_{3}=\{(3,1),(2,3),(2,2),(3,3),(1,1)\}$
4. $R_{4}=\{(1,2),(2,1),(3,1),(1,3),(2,3),(3,2)\}$
5. $R_{5}=\{(2,2),(3,3)\}$
R_{1} is not reflexive as $(2,2)$ and $(3,3)$ do not exist.
R_{2} is reflexive as $(1,1),(2,2)$ and $(3,3)$ exist.
R_{3} is reflexive as $(1,1),(2,2)$ and $(3,3)$ exist.

Symmetric and Anti-symmetric (i)

Definition: A binary relation, R is symmetric if $(b, a) \in R$ if $\exists(a, b) \in R, \forall a, b \in A$. It is symmetric if there is a symmetric (inverse) of elements for all ordered pairs.

Definition: A binary relation, R is anti-symmetric if $(b, a) \in R$ and $\exists(a, b) \in R$ only if $a=b$. A relation can't be both symmetric and anti-symmetric.

Symmetric and Anti-symmetric (ii)

Let $A=\{1,2,3\}$. Determine whether these relations are symmetric.

1. $R_{1}=\{(1,1),(2,1),(1,2)\}$
2. $R_{2}=\{(1,1),(1,2),(2,2),(3,2),(3,3)\}$
3. $R_{3}=\{(3,1),(2,3),(2,2),(3,3),(1,1)\}$
4. $R_{4}=\{(1,2),(2,1),(3,1),(1,3),(2,3),(3,2)\}$
5. $R_{5}=\{(2,2),(3,3)\}$
R_{1} is symmetric as $(1,1)$ exist for itself and $(2,1)$ exist for $(1,2)$.
R_{2} is not symmetric as $(2,1)$ does not exist for $(1,2)$, and $(2,3)$ does not exist for $(3,2)$
R_{3} is not symmetric as $(1,3)$ does not exist for $(3,1)$, and $(3,2)$ does not exist for $(2,3)$
R_{5} is anti-symmetric as $(2,2)$ and $(3,3)$ exist where $a=b$. .

Transitive (i)

Definition: A binary relation, R is transitive if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R, \forall a, b, c \in A$. It is transitive relations among two ordered pair such that $a \rightarrow b \rightarrow c$.

Transitive (ii)

Let $A=\{1,2,3\}$. Determine whether these relations are transitive.

$$
\begin{array}{ll}
\text { 1. } & R_{1}=\{(1,1),(2,1),(1,2)\} \\
\text { 2. } & R_{2}=\{(1,2),(2,3),(1,3),(3,3)\} \\
\text { 3. } & R_{3}=\{(3,1),(2,3),(2,2),(3,3),(1,1)\} \\
\text { 4. } & R_{4}=\{(1,2),(2,1),(3,1),(1,3),(2,3),(3,2)\} \\
\text { 5. } & R_{5}=\{(2,2),(3,3)\}
\end{array}
$$

R_{1} is not transitive as $(2,1)$ and $(1,2)$ exist, but $(2,2)$ does not.
R_{2} is transitive as $(1,2)$ and $(2,3)$ exist, thus $(1,3)$ also exist.
R_{3} is not transitive as $(2,3)$ and $(3,1)$ exist, but $(2,1)$ does not.

http://ocw.ump.edu.my/course/view.php?id=443

