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Chapter Description

• Chapter outline

2.8 Relations and Their Properties

Reflexive

Symmetric

Transitive

• Aims

– Determine whether a relation is reflexive, symmetric 

or transitive
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Binary relation (i)

Definition: Let A  and B  be sets. A binary relation, R  between A  and B   

is a collection of ordered pairs of element in A  and elements in B . 

 

A binary relation is a subset of Cartesian product, R A B  .    

The ordered pair, ( , )n na b  is a subset of R  , ( , )n na b R . 

If a binary relation of set A  only, it is a subset of Cartesian product of R A A  .    
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Binary relation (ii)

Example 1 

Let ( , , )A a b c  and (1,2)B  .  

The Cartesian product of {( ,1), ( , 2), ( ,1), ( , 2), ( ,1), ( , 2)}A B a a b b c c     

A binary collection, R can be represented as {( ,1), ( , 2), ( ,1), ( , 2)}R a b c c .  

*Note that R A B  , thus it is not compulsory for R to contain all elements  

of A B . 

*Note that a function can be represented as a relation.  
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Binary relation (iii)

A relation can also be represented like a ‘function’ or graphically. For this example

{( ,1), ( , 2), ( ,1), ( , 2)}R a b c c . 
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Binary relation (iv)

Let {1,2,3}A  . What are the ordered pairs such that {( , ) | }R a b a b  ? 

 

Answer:  

This relation is from A  to A .  

The number elements in A  is 3 and the total ordered pair is 
32 8.   

All of the ordered pairs of {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}A  .  

However,  the ordered pair which satisfy a b  is 

{(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)}R  . 
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Properties of Relations

There are three basic types of binary relation properties which are: 

1. Reflexive 

2. Symmetric or antisymmetric 

3. Transitive 
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Reflexive (i)

Definition: A binary relation, R  is reflexive if ( , ) ,a a R a A   . 

It is reflexive is there is an ordered pair of the same elements for all elements.  
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Reflexive (ii)

Let {1, 2,3}.A   Determine whether these relations are reflexive. 

1. 1 {(1,1), (2,1), (1,2)}R   

2. 2 {(1,1), (1,2), (2,2), (3,2), (3,3)}R   

3. 3 {(3,1), (2,3), (2,2), (3,3), (1,1)}R   

4. 4 {(1,2), (2,1), (3,1), (1,3), (2,3), (3,2)}R   

5. 5 {(2,2), (3,3)}R   

1R  is not reflexive as (2,2) and (3,3) do not exist. 

2R  is reflexive as (1,1), (2,2) and (3,3) exist. 

3R  is reflexive as (1,1), (2,2) and (3,3) exist. 

 

Determine 4R  and 5R  on your own. 
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Symmetric and Anti-symmetric (i)

Definition: A binary relation, R  is symmetric if ( , )b a R if ( , ) , , .a b R a b A     

It is symmetric if there is a symmetric (inverse) of elements for all ordered pairs. 

 

Definition: A binary relation, R  is anti-symmetric if ( , )b a R and ( , )a b R   

only if .a b   A relation can’t be both symmetric and anti-symmetric. 
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Symmetric and Anti-symmetric (ii)

Let {1, 2,3}.A   Determine whether these relations are symmetric. 

1. 1 {(1,1), (2,1), (1,2)}R   

2. 2 {(1,1), (1,2), (2,2), (3,2), (3,3)}R   

3. 3 {(3,1), (2,3), (2,2), (3,3), (1,1)}R   

4. 4 {(1,2), (2,1), (3,1), (1,3), (2,3), (3,2)}R   

5. 5 {(2,2), (3,3)}R   

1R  is symmetric as (1,1) exist for itself and (2,1) exist for (1,2).  

2R  is not symmetric as (2,1) does not exist for (1,2), and (2,3) does not exist for (3,2)  

3R  is not symmetric as (1,3) does not exist for (3,1), and (3,2) does not exist for (2,3) 

5R  is anti-symmetric as (2,2) and (3,3) exist where .a b  . 

Determine 4R  on your own. 
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Transitive (i)

Definition: A binary relation, R  is transitive if ( , )a b R and ( , )b c R ,  

then ( , ) ,a c R  , ,a b c A  . It is transitive relations among two ordered  

pair such that a b c  .   
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Transitive (ii)

Let {1, 2,3}.A   Determine whether these relations are transitive. 

1. 1 {(1,1), (2,1), (1,2)}R   

2. 2 {((1,2), (2,3), (1,3), (3,3)}R   

3. 3 {(3,1), (2,3), (2,2), (3,3), (1,1)}R   

4. 4 {(1,2), (2,1), (3,1), (1,3), (2,3), (3,2)}R   

5. 5 {(2,2), (3,3)}R   

1R  is not transitive as (2,1) and (1,2) exist, but (2,2) does not. 

2R  is transitive as (1,2) and (2,3) exist, thus (1,3) also exist. 

3R  is not transitive as (2,3) and (3,1) exist, but (2,1) does not. 

 

Determine 4R  and 5R  on your own. 


