

DISCRETE MATHEMATICS AND APPLICATIONS

Relations

Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my) Mohd Sham Mohamad (mohdsham@ump.edu.my)

Faculty of Industrial Sciences & Technology

Chapter Description

- Chapter outline
 - 2.8 Relations and Their Properties
 - Reflexive
 - Symmetric
 - Transitive
- Aims
 - Determine whether a relation is reflexive, symmetric or transitive

References

- Rosen K.H., Discrete Mathematics & Its Applications, (Seventh Edition), McGraw-Hill, 2011
- Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
- Ram Rabu, Discrete Mathematics, Pearson, 2012
- Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
- Chandrasekaren, N. & Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, 2015

Binary relation (i)

Definition: Let A and B be sets. A **binary relation**, R between A and B is a collection of ordered pairs of element in A and elements in B.

A binary relation is a subset of Cartesian product, $R \subseteq A \times B$. The ordered pair, (a_n, b_n) is a subset of R, $(a_n, b_n) \subseteq R$.

If a binary relation of set A only, it is a subset of Cartesian product of $R \subseteq A \times A$.

Binary relation (ii)

Example 1

Let A = (a, b, c) and B = (1, 2). The Cartesian product of $A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$ A binary collection, R can be represented as $R = \{(a,1), (b,2), (c,1), (c,2)\}$.

*Note that $R \subseteq A \times B$, thus it is not compulsory for R to contain all elements of $A \times B$.

*Note that a function can be represented as a relation.

Binary relation (iii)

A relation can also be represented like a '*function*' or graphically. For this example $R = \{(a,1), (b,2), (c,1), (c,2)\}.$

Binary relation (iv)

Let $A = \{1, 2, 3\}$. What are the ordered pairs such that $R = \{(a, b) | a \ge b\}$?

Answer:

This relation is from A to A.

The number elements in A is 3 and the total ordered pair is $2^3 = 8$.

All of the ordered pairs of $A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}.$

However, the ordered pair which satisfy $a \ge b$ is

 $R = \{(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)\}.$

Properties of Relations

There are three basic types of binary relation properties which are:

- 1. Reflexive
- 2. Symmetric or antisymmetric
- 3. Transitive

Reflexive (i)

Definition: A binary relation, *R* is **reflexive** if $(a, a) \in R, \forall a \in A$. It is reflexive is there is an ordered pair of the same elements for all elements.

Reflexive (ii)

Let $A = \{1, 2, 3\}$. Determine whether these relations are reflexive.

- 1. $R_1 = \{(1,1), (2,1), (1,2)\}$
- 2. $R_2 = \{(1,1), (1,2), (2,2), (3,2), (3,3)\}$
- 3. $R_3 = \{(3,1), (2,3), (2,2), (3,3), (1,1)\}$
- 4. $R_4 = \{(1,2), (2,1), (3,1), (1,3), (2,3), (3,2)\}$
- 5. $R_5 = \{(2,2), (3,3)\}$
- R_1 is not reflexive as (2,2) and (3,3) do not exist.
- R_2 is reflexive as (1,1), (2,2) and (3,3) exist.
- R_3 is reflexive as (1,1), (2,2) and (3,3) exist.

and R_{2} on your own. Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Symmetric and Anti-symmetric (i)

Definition: A binary relation, *R* is **symmetric** if $(b, a) \in R$ if $\exists (a, b) \in R, \forall a, b \in A$. It is symmetric if there is a symmetric (inverse) of elements for all ordered pairs.

Definition: A binary relation, *R* is **anti-symmetric** if $(b, a) \in R$ and $\exists (a, b) \in R$ only if a = b. A relation can't be both symmetric and anti-symmetric.

Symmetric and Anti-symmetric (ii)

Let $A = \{1, 2, 3\}$. Determine whether these relations are symmetric.

- 1. $R_1 = \{(1,1), (2,1), (1,2)\}$
- 2. $R_2 = \{(1,1), (1,2), (2,2), (3,2), (3,3)\}$
- 3. $R_3 = \{(3,1), (2,3), (2,2), (3,3), (1,1)\}$
- 4. $R_4 = \{(1,2), (2,1), (3,1), (1,3), (2,3), (3,2)\}$
- 5. $R_5 = \{(2,2), (3,3)\}$
- R_1 is symmetric as (1,1) exist for itself and (2,1) exist for (1,2).
- R_2 is not symmetric as (2,1) does not exist for (1,2), and (2,3) does not exist for (3,2)
- R_3 is not symmetric as (1,3) does not exist for (3,1), and (3,2) does not exist for (2,3)

<u> R_5 is anti-symmetric</u> as (2,2) and (3,3) exist where a = b.

Adam Shariff Adli Aminuddin

ttp://ocw.ump.edu.my/course/view.php?id=443

Transitive (i)

Definition: A binary relation, *R* is **transitive** if $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, $\forall a,b,c \in A$. It is transitive relations among two ordered pair such that $a \rightarrow b \rightarrow c$.

Transitive (ii)

Let $A = \{1, 2, 3\}$. Determine whether these relations are transitive.

1.
$$R_1 = \{(1,1), (2,1), (1,2)\}$$

2. $R_2 = \{((1,2), (2,3), (1,3), (3,3)\}$
3. $R_3 = \{(3,1), (2,3), (2,2), (3,3), (1,1)\}$
4. $R_4 = \{(1,2), (2,1), (3,1), (1,3), (2,3), (3,2)\}$
5. $R_5 = \{(2,2), (3,3)\}$

 R_1 is not transitive as (2,1) and (1,2) exist, but (2,2) does not.

- R_2 is transitive as (1,2) and (2,3) exist, thus (1,3) also exist.
- R_3 is not transitive as (2,3) and (3,1) exist, but (2,1) does not.

and *R* on your own Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443