DISCRETE MATHIEMATICS AND APPLICATIONS

Functions

Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my)
Mohd Sham Mohamad (mohdsham@ump.edu.my)

Faculty of Industrial Sciences \& Technology

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Chapter Description

- Chapter outline
2.6 Introduction to Functions
2.7 One-to-One and Onto Functions
- Aims
- Identify a function and find the domain and range of a function and define a function as relation, find a binary relation from A to B and relations on a set
- Identify a one-to-one \& an onto function, bijection and find the inverse of a function

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

References

- Rosen K.H., Discrete Mathematics \& Its Applications, (Seventh Edition), McGraw-Hill, 2011
- Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
- Ram Rabu, Discrete Mathematics, Pearson, 2012
- Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
- Chandrasekaren, N. \& Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, 2015

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Functions (i)

Definition: Let A and B be sets. A function, f from A to $B, f: A \rightarrow B$ is the assignment of all elements in A to exactly one element in B.

The assignment of element $x \in A$ to $y \in B$, is denoted by $f(x)=y$.

Not a function as $\exists x \in A$ which is assigned

Functions (ii)

Example 1

Let $f(x)=2 x+1$. Determine the value of $f(1)$.
$f(1)=2(1)+1$
$f(1)=3$

* Notice that $f(1)$ has only one value. It cannot be assigned to more than one values.

Example 2

Let $f(x)=x^{2}$. Determine the value of $f(2)$ and $f(-2)$

$$
\begin{array}{ll}
f(2)=(2)^{2} & f(2)=(-2)^{2} \\
f(2)=4 & f(2)=4
\end{array}
$$

This function is valid, as $f(2)$ and $f(-2)$ is assigned to one value, although the value Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Functions (iii)

Definition: If f is a function from A to $B, f: A \rightarrow B$, then A is the domain and B is the codomain

Definition: If $f(x)=y$, then x is the preimage and y is the image. f maps x to y.
Definition: The range if function, f is the set of all images of elements in A.

The $x_{1}, x_{2}, \ldots, x_{n}$ are the pre-images and $y_{1}, y_{2}, \ldots, y_{n}$ are the images.
The range is the set of assigned images which are $y_{1}, y_{2}, \ldots, y_{n}$.
muanו ו וariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Sum of Functions

Definition: Let f_{1} and f_{2} be functions. The sum of f_{1} and f_{2} is given by $\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$

Example 1

Let $f_{1}=3 x$ and $f_{1}=-2 x$

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)(x) & =f_{1}(x)+f_{2}(x) \\
& =3 x+(-2 x) \\
& =x
\end{aligned}
$$

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Product of Functions

Definition: Let f_{1} and f_{2} be functions. The product of f_{1} and f_{2} is given by $\left(f_{1} \cdot f_{2}\right)(x)=f_{1}(x) \cdot f_{2}(x)$

Example 1

Let $f_{1}=3 x$ and $f_{1}=-2 x$
$\left(f_{1} \cdot f_{2}\right)(x)=f_{1}(x) \cdot f_{2}(x)$

$$
\begin{aligned}
& =(3 x)(-2 x) \\
& =-6 x^{2}
\end{aligned}
$$

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Composite Function (i)

Definition: Let f and g be functions. The composite function, $f \circ g$ is given by $(f \circ g)(x)=f(g(x))$

If $g(x)=y$, then
$f \circ g=f(g(x))$
$f \circ g=f(y)$
$f \circ g=z$

Adam Shariff Aaı Aımıиииии
http://ocw.ump.edu.my/course/view.php?id=443

Composite function (ii)

Example 1

Let $f(x)=5 x$ and $g(x)=2 x^{2}$. Determine $f \circ g(3)$.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f\left(2 x^{2}\right) \\
& =5\left(2 x^{2}\right) \\
& =10 x^{2}
\end{aligned}
$$

$$
(f \circ g)(3)=10(3)^{2}
$$

$$
=90
$$

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

One to one function (i)

Definition: A function, f is one to one (injective) if and only if $f(x)=f(y)$ implies $x=y, \forall x, y$.

One to one

One to one

NOT One to one

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

One to one function (ii)

Example 1

Suppose there are two sets $A=\{1,2,3\}$ and $B=\{a, b, c, d\}$. Let $f: A \rightarrow B$ such that $f(1)=a, f(2)=c, f(3)=b$. Is f one to one?
f is one to one as all element in A is assigned uniquely to one element in B, although element d is not assigned.

Example 2

Determine whether $f(x)=2 x+2$ is one to one.
To show that f is one to one, we must use proving method to prove that all x is assigned uniquely.
Let $f(x)=y$

$$
2 x+2=y
$$

$$
x=\frac{y-2}{2}, \forall x \in X
$$

Thus, f is one to one.

Relate it with CHAPTER 4: Proof Methods !!!

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Onto function (i)

Definition: A function, f is onto (surjective) if and only if $\forall b \in B, \exists a \in A$ such that $f(a)=b$. All element of B is assigned by element from A.

Onto

NOT Onto

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Onto function (ii)

Example 1

Suppose there are two sets $A=\{1,2,3\}$ and $B=\{a, b, c, d\}$. Let $f: A \rightarrow B$ such that $f(1)=a, f(2)=c, f(3)=b$. Is f onto .

Although f is one to one, but in this example, f is not onto because element $d \in B$ is not assigned by elements from A.

One to one and onto

Definition: A function, f is one to one and onto (bijective) iff f is both one to one and onto.
A function must satisfy both one to one and onto condition in order to be called bijective.

One to one and onto

NOT One to one
but Onto

One to one
but NOT Onto

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

