

DISCRETE MATHEMATICS AND APPLICATIONS

Functions

Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my) Mohd Sham Mohamad (mohdsham@ump.edu.my)

Faculty of Industrial Sciences & Technology

Chapter Description

- Chapter outline
 - 2.6 Introduction to Functions
 - 2.7 One-to-One and Onto Functions
- Aims
 - Identify a function and find the domain and range of a function and define a function as relation, find a binary relation from A to B and relations on a set
 - Identify a one-to-one & an onto function, bijection and find the inverse of a function

References

- Rosen K.H., Discrete Mathematics & Its Applications, (Seventh Edition), McGraw-Hill, 2011
- Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
- Ram Rabu, Discrete Mathematics, Pearson, 2012
- Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
- Chandrasekaren, N. & Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, 2015

Functions (i)

Definition: Let *A* and *B* be sets. A **function**, *f* from *A* to *B*, $f : A \rightarrow B$ is the **assignment** of all elements in *A* to **exactly one element** in *B*.

The assignment of element $x \in A$ to $y \in B$, is denoted by f(x) = y.

Functions (ii)

Example 1

Let f(x) = 2x + 1. Determine the value of f(1). f(1) = 2(1) + 1f(1) = 3

* Notice that f(1) has only one value. It cannot be assigned to more than one values.

Example 2

Let $f(x) = x^2$. Determine the value of f(2) and f(-2) $f(2) = (2)^2$ $f(2) = (-2)^2$ f(2) = 4

This function is valid, as f(2) and f(-2) is assigned to one value, although the value

Functions (iii)

Definition: If *f* is a function from *A* to *B*, $f : A \rightarrow B$, then *A* is the **domain** and *B* is the **codomain**

Definition: If f(x) = y, then x is the **preimage** and y is **the image**. f maps x to y. **Definition:** The **range** if function, f is the set of all images of elements in A.

Sum of Functions

Definition: Let f_1 and f_2 be functions. The sum of f_1 and f_2 is given by $(f_1 + f_2)(x) = f_1(x) + f_2(x)$

Example 1

Let
$$f_1 = 3x$$
 and $f_1 = -2x$
 $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
 $= 3x + (-2x)$
 $= x$

Product of Functions

Definition: Let f_1 and f_2 be functions. The product of f_1 and f_2 is given by $(f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x)$

Example 1

Let $f_1 = 3x$ and $f_1 = -2x$ $(f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x)$ = (3x)(-2x) $= -6x^2$

Composite Function (i)

Definition: Let f and g be functions. The composite function, $f \circ g$ is given by $(f \circ g)(x) = f(g(x))$

В CΑ If g(x) = y, then $f \circ g = f(g(x))$ Z_1 y_1 x_1 g(x)f(x) $f \circ g = f(y)$ Z_2 y_2 x_2 $f \circ g = z$ ------ Z_n х" y_n $f \circ g(x)$ Adam Shariff Adu Aminudum http://ocw.ump.edu.my/course/view.php?id=443 NC

Composite function (ii)

Example 1

Let f(x) = 5x and $g(x) = 2x^2$. Determine $f \circ g(3)$. $(f \circ g)(x) = f(g(x))$ $= f(2x^2)$ $= 5(2x^2)$ $= 10x^2$

 $(f \circ g)(3) = 10(3)^2$

=90

One to one function (i)

Definition: A function, *f* is one to one (injective) if and only if f(x) = f(y) implies x = y, $\forall x, y$.

One to one

One to one

NOT One to one

One to one function (ii)

Example 1

Suppose there are two sets $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. Let $f : A \rightarrow B$ such that f(1) = a, f(2) = c, f(3) = b. Is *f* one to one?

f is one to one as all element in A is assigned uniquely to one element in B, although element d is not assigned.

Example 2

Determine whether f(x) = 2x + 2 is one to one.

To show that f is one to one, we must use proving method to prove that all x is assigned uniquely. Let f(x) = y

$$2x + 2 = y$$
$$x = \frac{y - 2}{2}, \forall x \in X$$

Thus, f is one to one.

Relate it with CHAPTER 4: Proof Methods !!!

Onto function (i)

Definition: A function, f is **onto** (surjective) if and only if $\forall b \in B, \exists a \in A$ such that f(a) = b. All element of B is assigned by element from A.

Onto function (ii)

Example 1

Suppose there are two sets $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. Let $f : A \rightarrow B$ such that f(1) = a, f(2) = c, f(3) = b. Is f onto?

Although *f* is one to one, but in this example, *f* is not onto because element $d \in B$ is not assigned by elements from *A*.

One to one and onto

Definition: A function, f is **one to one and onto** (bijective) iff f is both one to one and onto.

A function must satisfy both one to one and onto condition in order to be called bijective.

