

DISCRETE MATHEMATICS AND APPLICATIONS

Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my) Mohd Sham Mohamad (mohdsham@ump.edu.my)

Faculty of Industrial Sciences & Technology

Chapter Description

- Chapter outline
 - 2.1 Set terminologies and concepts
 - 2.2 Operation on sets
 - 2.3 Cartesian products
 - 2.4 Power sets
 - 2.5 Applications of set theory
- Aims
 - Write and define a set in different notation
 - Identify the element of a set, empty set, set equality, subset and cardinality of a set
 - Use set operation and identities to solve problem in set theory
 - Identify the Cartesian product of two or more sets
 - Identify the power set of a given set and its number of elements

the knowledge of set theory into real world problem Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

References

- Rosen K.H., Discrete Mathematics & Its Applications, (Seventh Edition), McGraw-Hill, 2011
- Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
- Ram Rabu, Discrete Mathematics, Pearson, 2012
- Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
- Chandrasekaren, N. & Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, 2015

Sets and Empty Set (i)

Definition: A set is an unordered collection of elements.

Let A be a set, and a_1, a_2, \dots, a_n is the elements, then $A = \{a_1, a_2, \dots, a_n\}$.

If a_1 is an element of A **OR** a_1 belongs to A, then $a_1 \in A$.

If a_1 is not an element of A, then $a_1 \notin A$.

Definition: A set with no elements is known as **empty set**, denoted by \emptyset or $\{ \}$

Adam Shariff A http://ocw.um

Sets and Empty Set (ii)

Example 1

A set of local cars can be expressed as, *Cars* = {Preve, MyVi, Kancil, Saga, Waja}

A set of food and beverages in a restaurant menu, $F = \{Roti canai, teh ais, mi goreng, air suam\}$

A set of alphabets can be written as, $A = \{a, b, c, ..., z\}$

Example 2

- $N={\rm the\ set\ of\ natural\ numbers}$
- $\mathbf{Q} =$ the set of rational numbers
- $\mathbf{R} = \mathrm{the \ set \ of \ real \ numbers}$
- $\mathbf{P} = \mathrm{the \ set \ of \ prime \ numbers}$
- $\mathbf{Z} = \mathrm{the \ set \ of \ integers}$
- $\mathbf{E} = \mathrm{the \ set} \ \mathrm{of} \ \mathrm{even} \ \mathrm{integers}$
- $\mathbf{O} = \mathrm{the \; set \; of \; odd \; integers}$

Set Notation (i)

There are two types of set notations which are roster and set builder:

1. Roster

List the elements of a set in the form of

Set_name={ $element_1$, $element_2$, ... $element_n$ }

i.e $N = \{1, 2, 3, 4, 5, \dots n\}$

2. Set Builder

Set_name={variable|variable_condition₁, variable_condition₂,...variable_condition_n} i.e $N = \{x \mid x \text{ is natural number}\}$

Set Notation (ii)

Example 1

- i. By using roster notation, express the set of positive integer less than 5. Answer: $A = \{1, 2, 3, 4\}$
- ii. By using set builder notation, express the set of positive integer less than 5. **Answer:** $A = \{x \mid x < 5, x \in Z^+\}$

Example 2

- i. By using roster notation, express a set of even number between 11 until 21. Answer: $A = \{12, 14, 16, 18, 20\}$
- ii. By using set builder notation, express a set of even number between 11 until 21. **Answer:** $A = \{x | 11 < x < 21, x \text{ is even}\}$ **OR**

$$A = \{x \mid 11 < x < 21, x \in Z^+, x = 2n \text{ where } n = 1, 2, ..., n\}$$

Set Notation (iii)

Example 3

i. By using roster notation, express a set of number where the element, $x = \frac{n^2}{2}$, n = 1, 2, ...5.

Answer:
$$A = \{\frac{1}{2}, 2, \frac{9}{2}, 8, \frac{25}{2}\}$$
 or $A = \{0.5, 2, 4.5, 8, 12.5\}$

ii. By using set builder notation, express a set of number where the element, $x = \frac{n^2}{2}$, n = 1, 2, ...5.

Answer:
$$A = \{x \mid x = \frac{n^2}{2}, n = 1, 2, ..., 5\}$$

Venn diagram

Definition: A **Venn diagram** is a diagram that shows all possible logical relations between a finite collection of different sets.

Venn diagram is usually represented by overlapping circles which are shaded according to the characteristics or relationship of the set(s).

Equal sets (i)

Definition: Two sets A and B, are equal sets A = B, if and only if they have the same elements regardless of the order and repetitive elements.

Example 1

Given set $X = \{a, b, c\}$, $Y = \{b, a, c\}$, $Z = \{a, a, b, b, c, c, c\}$. Determine whether set X, Y and Z are equal sets.

Answer:

X = YX = ZX = Y = Z

Equal sets (ii)

Example 2

Set $A = \{1, 3, 5\}$ and $B = \{1, 3, 1\}$ are equal. Is this statement true? Justify your answer

Answer:

A and B is not equal, $A \neq B$ as 5 is not an element in B. Thus, they don't have the same elements.

Example 3

Suppose there are two sets which are a set of vowels and consonants. Are these two sets equal?

Answer:

It is not equal as these two sets clearly have different elements.

Subset (i)

Definition: A set A is a **subset** of a set B, $A \subseteq B$, if and only if every element of A is an element of B.

For any set

i. $\emptyset \subseteq B$ ii. $B \subseteq B$

If a set A is not a subset of a set B, $A \not\subset B$.

Definition: A set *A* is a **proper subset** of a set *B*, $A \subset B$, if *A* is a subset of *B* and there exist one element of *B* that is not in *A*, where $A \neq B$

Subset (ii)

The definition of subset and proper subset is **not the same**.

A subset contains all elements which exist in the original set.

Proper subset is a set which is

- 1. Definitely "Smaller" with fewer element than a 'bigger' set and
- 2. All elements exist in a bigger set.

In the example, $A \subseteq A$ and $B \subseteq A$. However, we can also write $B \subset A$ as it has less elements than A with all elements exist in A. The representation of $B \subset A$ is more appropriate mathematically.

Subset (iii)

Example 1

Let $A = \{2, 4\}$ and $B = \{1, 2, 3, 4, 5\}$

Then $A \subseteq B$ or $A \subset B$, and $B \not\subset A$

Example 2

Let $Set1 = \{Monday, Tuesday\}$, $Set2 = \{Tuesday, Thursday, Friday\}$ and Set3 is a set of days in a week.

Then $Set1 \not\subset Set2$ and $Set1 \subseteq Set3$

 $Set2 \not\subset Set1$ and $Set2 \subset Set3$

Set $3 \not\subset$ Set 1 and Set $3 \not\subset$ Set 2

Subset (iv)

Example 3

If $A \subseteq B$ and $B \subseteq C$, show that $A \subseteq C$

Answer:

Suppose an element, *a* exist in Set *A* where $a \in A$ Let $A \subseteq B$, then $a \in B$ where *a* is an element of *B* If $B \subseteq C$, then $a \in C$ as $a \in B$ Thus, $A \subseteq C$. proven.

Adam Shariff Adli Am Relate it with CHAPTER 4: Proof Methods !!!

http://ocw.ump.edu.my/course/view.php?id=443

Finite & Infinite Sets

Definition: Finite set is a set that contains finite elements.

Definition: Infinite set is a set that contains infinite elements.

Example 1

Let O is a set of natural number less than 10. Then O is finite. $O = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Example 2

If *O* is a set of natural number. Then *O* is infinite. $O = \{1, 2, 3, ...\}$

Example 3

Let set $A \subseteq B$. Determine whether A is finite or infinite, given that B is finite. If $A \subseteq B$, then $a_n \in A$ and $a_n \in B$

If *B* is finite, then $\exists a_{n-1} \leq a_n$ where $a_{n-1} \in B$

Relate it with CHAPTER 4: Proof Methods !!!

 $\begin{array}{c} \textbf{W} \\ \textbf{$

Cardinality of Set (i)

Definition: If A is finite, then the cardinality of set, |A| is the number of distinct elements in A.

Example 1

Let *V* is a set of vowels.

 $V = \{a, e, i, o, u\}$

|V| = 5, the cardinality of V is 5.

Example 2

Empty set, \varnothing has no elements.

 $|\varnothing| = 0$

Cardinality of Set (ii)

Example 3

Let $H = \{5, 3, 1, 3, 1, 3, 4\}$

|H| = 4 as there are only 4 distinct elements, $1, 3, 4, 5 \in H$

Example 4

Let
$$Z^+ = \{1, 2, 3, ..., n, n+1, n+2\}$$

 $|Z| = n+2$

Operations on Sets

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Communitising Technology

Union of Sets (i)

Definition: The union of sets *A* and *B*, $A \cup B$ is the set which contains all elements that are belong either in *A* or *B*.

 $A \cup B = \{x \mid x \in A \lor x \in B\}$

Union of Sets (ii)

Example 1

Let $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$.

 $A \cup B = \{1, 2, 3, 4, 5\}$

*Repetition of elements is not allowed as it counts as the same element in $A \cup B$.

Example 2

Let $A = \{i, a, 8\}$ and $B = \{7, 8, 9\}$

 $A \cup B = \{a, i, 7, 8, 9\}$

Intersection of sets (i)

Definition: The intersection of sets *A* and *B*, $A \cap B$ is the set which contains common elements of both *A* and *B*.

 $A \cap B = \{x \mid x \in A \land x \in B\}$

Intersection of sets (ii)

Example 1

Let $X = \{1, 2, 3\}$ and $Y = \{3, 4, 5\}$.

 $X \cap Y = \{3\}$

* Repetition of elements is not needed.

Example 2

Let $A = \{a, e, i, o, u\}$ and $B = \{i, i, o, a, n\}$. Determine $|A \cap B|$.

Then $A \cap B = \{a, i, o\}$.

Thus $|A \cap B| = 3$

Collection of sets (i)

Definition: Union collection of sets is the set that contain all elements that are

belong either in sets $A_1, A_2, ..., A_n$,

$$\bigcup_{i=1}^{n} A_{i} = A_{1}, A_{2}, \dots, A_{n},$$

Definition: Intersection Collection of Sets is the set that contain common

elements in sets $A_1, A_2, ..., A_n$,

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap \ldots \cap A_{n}$$

$$\widehat{O} \otimes \widehat{O} \otimes \widehat{O}$$

$$Adam Shariff Adli Aminuddin$$

$$http://ocw.ump.edu.my/course/view.php?id=443$$

Collection of sets (ii)

Example 1

Let
$$A_i = \{1, 2, 3, ..., i\}$$
. Find $\bigcup_{i=1}^n A_i$ and $\bigcap_{i=1}^n A_i$

Answer

Determine $A_1, A_2, A_3...A_n$ and find $A_1 \cup A_2 \cup A_3 \cup ... \cup A_n$

 $A_{1} = \{1\}$ $A_{2} = \{1, 2\}$ $A_{3} = \{1, 2, 3\}$ $A_{1} \cup A_{2} \cup A_{3} = \{1, 2, 3\}$ $A_{1} \cap A_{2} \cap A_{3} = \{1\}$

If we extrapolate the idea, we will see that

Collection of sets (iii)

Example 2

Let
$$A_i = \{0, i\}$$
. Find $\bigcup_{i=1}^n A_i$ and $\bigcap_{i=1}^n A_i$

Answer

Determine $A_1, A_2, A_3...A_n$ and find $A_1 \cup A_2 \cup A_3 \cup ... \cup A_n$

 $A_{1} = \{0, 1\}$ $A_{2} = \{0, 2\}$ $A_{3} = \{0, 3\}$ $A_{1} \cup A_{2} \cup A_{3} = \{0, 1, 2, 3\}$ $A_{1} \cap A_{2} \cap A_{3} = \{0\}$

If we extrapolate the idea, we will see that

Collection of sets (iv)

Example 3

Let
$$A_i = \{i, i+1, i+2, ...\}$$
. Find $\bigcup_{i=1}^n A_i$ and $\bigcap_{i=1}^n A_i$

Answer

Determine $A_1, A_2, A_3...A_n$ and find $A_1 \cup A_2 \cup A_3 \cup ... \cup A_n$

$$A_{1} = \{1, 2, 3, ...\}$$

$$A_{2} = \{2, 3, 4, ...\}$$

$$A_{3} = \{3, 4, 5, ...\}$$

$$A_{1} \cup A_{2} \cup A_{3} = \{1, 2, 3, 4, 5, ...\}$$

$$\bigcap_{i=1}^{2} A_{2} = A_{1} \cap A_{2} = \{2, 3, 4, ...\}$$

$$\bigcap_{i=1}^{3} A_{3} = A_{1} \cap A_{2} \cap A_{3} = \{3, 4, 5, ...\}$$

If we extrapolate the idea, we will see that

Complement of set (i)

Definition: Let A be the universal set. The **complement** of set A, \overline{A} or A^C is the set which contains elements in U but not in A.

 $\overline{A} = \{ x \mid x \in U, x \notin A \}$

Complement of set (ii)

Example 1

Let U is a set of English alphabets and A is a set of consonants. Then $\overline{A} = \{a, e, i, o, u\}$

Example 2

Let set $U = \{1, 2, 3, \dots 10\}$ and *E* is set of odd number less than 10. Find \overline{E} .

Answer:

As $E = \{1, 3, 5, 7, 9\}$, then $\overline{E} = \{2, 4, 6, 8, 10\}$

Disjoint set

Definition: Set *A* and set *B* are **disjoint**, if they have no common elements, $A \cap B = \emptyset$.

Example 1

- i. A set of consonants and a set of vowels are disjoint.
- ii. A set of boys and girls are disjoint.

3, 5, 7} and set $B_{i} = \{2, 4, 9\}$ are disjoint. http://ocw.ump.edu.my/course/view.php?id=443

Laws of sets

Let U be a universal set. If A, B, and C are subsets of U, then,

Laws	Properties	L	Laws	Properties	
Identity	$A \cup \varnothing = A$ $A \cap U = A$		Distributive	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Idempotent	$A \cup A = A$ $A \cap A = A$		Absorption	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	
Commutative	$A \cup B = B \cup A$ $A \cap A = B \cap A$		Complement	$\overline{A} = A$ $\overline{U} = \emptyset$ $\overline{\emptyset} = U$	
Associative	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$			$A \cup \overline{A} = U \qquad A \cap \overline{A} = \emptyset$	
ļ	r		De Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	

Addition of sets (i)

Let *A*, *B*, and *C* be finite sets. The addition formulae for A, *B*, and *C* depends on these conditions:

- 1. If A and B are disjoint
 - $|A \cup B| = |A| + |B|$
- 2. If A and B are not disjoint
 - $\mid A \cup B \mid = \mid A \mid + \mid B \mid \mid A \cap B \mid$
- 3. If A, B, and C are not disjoint

 $\begin{array}{l} |=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|\\ \text{Adam Shariff Adli Aminuddin}\\ \text{http://ocw.ump.edu.my/course/view.php?id=443} \end{array}$

Addition of sets (ii)

Let A and B be subsets of universal set U where |U|=100, |A|=60, |B|=40. $|A \cap B|=20$.

a) $|A \cup B| = |A| + |B| - |A \cap B|$

= 60 + 40 - 20= 80

b)
$$\frac{|\overline{A}| = |U - A| = 100 - 60 = 40}{|\overline{B}| = |U - B| = 100 - 40 = 60}$$

c)
$$|A \cap \overline{B}| = |A| - |A \cap B|$$

= 60 - 20= 40

$$|A \cup \overline{B}| = |A| + (|U| - |B|)$$

ď

It is better to sketch Venn diagram before answering Adam Shariff Adli Aminuddin bering system. http://ocw.ump.edu.my/course/view.php?id=443

Difference of sets

Definition: Let *A*, and *B* be finite sets. The **difference of sets** *A* and *B*, A - B, is the set which contains all elements in A but not *B*.

 $A - B = \{x \mid x \in A, x \notin B\}$

Symmetric difference/ Mutually exclusive

Definition: Let *A*, and *B* be finite sets. The symmetric difference/ mutually exclusive of *A* and *B*, $A \oplus B$, is the set which contains elements either in *A* or *B* but not both.

 $A \oplus B = \{x \mid (x \in A \cup \in B) \land (x \notin A \cap B)\}$ $A \oplus B = (A - B) \cup (B - A)$

Cartesian Products (i)

Definition: A general set may be unordered. An ordered set which has sequence of $(a_1, a_2, ..., a_n)$ is known as **ordered** *n***-tuple**.

A 2-ordered *n*-tuple are equal if and only if

 $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$

 $(a_i) = (b_i), \forall i = 1, 2, ..., n$

Ordered pairs between element of (a_i) and (b_i) exist $\forall i = 1, 2, ..., n$.

Cartesian Products (ii)

Definition: The **Cartesian product** of set *A* and *B*, $A \times B$ is the set of all ordered pairs $(a_i, b_i), \forall i = 1, 2, ..., n$ such that $a_i \in A$ and $b_i \in B$.

The cardinality of Cartesian product is given as $|A \times B| = |A| \times |B|$.

Suppose there are *n* sets. The Cartesian product of set $A_1, A_2, ..., A_n$, $A_1 \times A_2 \times ... \times A_n$ is the set of all ordered *n*-tuples of $\{(a_1, a_2, ..., a_n)\}, \forall i = 1, 2, ..., n$ such that $a_i \in A$.

Power sets (i)

Definition: The **power set** of set *A*, P(A) is the set of all subsets of *A*. The number of distinct subset of a set *A* with *n* elements is 2^n .

Example 1

Let $A = \{1, 2\}$, as A has 2 elements, then the number of distinct subset of A is $2^2 = 4$. $P(A) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$

*Don't forget to include empty set as $\emptyset \in A$ for any sets.

Power sets (ii)

Example 2

Determine the power set of \varnothing .

As \emptyset has no elements, then $2^0 = 1$.

 $P(\emptyset) = \{\emptyset\}$ as $\emptyset \in A$

Example 2

Determine the power set of $A = \{\emptyset, \{\emptyset\}\}\)$. There are 2 elements, so $2^2 = 4$

 $P(A) = \{\emptyset, \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$

