DISCRETE MATHIEMATICS AND APPLICATIONS

Number Theory 3

Intan Sabariah Sabri (intansabariah@ump.edu.my)
Siti Zanariah Satari (zanariah@ump.edu.my)
Adam Shariff Adli Aminuddin (adamshariff@ump.edu.my)

Faculty of Industrial Sciences \& Technology

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Chapter Description

- Chapter outline
1.6 Euclidean Algorithm
1.7 Extended Euclidean Algorithm
1.8 Modular Arithmetic
- Aims
- Find the Greatest Common Divisor of two integers by using Euclidean Algorithm
- Find the linear equation between two numbers and their Greatest Common Divisor

BY
NC
http://ocw.ump.edu.my/course/view.php?id=443

References

- Rosen K.H., Discrete Mathematics \& Its Applications, (Seventh Edition), McGraw-Hill, 2011
- Epp S.S, Discrete Mathematics with Applications, (Fourth Edition), Thomson Learning, 2011
- Ram Rabu, Discrete Mathematics, Pearson, 2012
- Walls W.D., A beginner's guide to Discrete Mathematics, Springer, 2013
- Chandrasekaren, N. \& Umaparvathi, M., Discrete Mathematics, PHI Learning Private Limited, Delhi, Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Euclidean algorithm

- Euclidean algorithm is another method to determine GCD
- This method is efficient than prime factorization especially if the given integers are large
- The algorithm steps is given as follows

Step 1: Initialize. Let two integers a and b
Step 2: If $a>b$, then use division algorithm to determine $b=q a+r$. Else $a=q b+r$
Step 3: q will becomes new dividend and r becomes new divisor
Step 4: Repeat Step 2 until $r=0$
Step 5: The last divisor is the GCD (a, b)

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Euclidean algorithm: Example

Determine $\operatorname{GCD}(190,34)$ by using Euclidean algorithm.

Let $a=190$ and $b=34$. As $34<190$ then,
divide 190 by 34, divide 34 by 20, divide 20 by 14, divide 14 by 6 , divide 6 by 2,

$$
\begin{aligned}
& 190=5(34)+20 \\
& 34=1(20)+14 \\
& 20=1(14)+6 \\
& 14=2(6)+2 \\
& 6=3(2)+0, r=0 \text { STOP }
\end{aligned}
$$

2 is the last divisor

Extended Euclidean Algorithm

Theorem
Let a and b be positive integers, then there exist integers s and t such that

$$
\text { GCD }(a, b)=s a+t b
$$

The theorem states that the GCD for a and b can be expressed as a linear combination of a and b

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Extended Euclidean Algorithm: Example

Express $\operatorname{gcd}(252,198)=18$ as a linear combination of 252 and 198.

Use Euclidean algorithm first to produce these linear equations
$252=1(198)+54$
$198=3(54)+36$
$54=1(36)+18$

Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Extended Euclidean Algorithm: Example

$$
54=252-1(198)
$$

$$
\begin{aligned}
36 & =198-3(54) \\
& =198-3[252-1(198)] \\
& =198-3(252)+3(198) \\
& =4(198)-3(252)
\end{aligned}
$$

$$
\begin{aligned}
18 & =54-1(36) \\
& =252-1(198)-1[4(198)-3(252)] \\
& =252-198-4(198)+3(252) \\
& =4(252)-5(198)
\end{aligned}
$$

Modular arithmetic

In some real life situation which involves repeated trend or cycle of a process, we can represent it by using modular arithmetic. Modular arithmetic only concern on the calculation of the remainder only. For example:

If the time is now 9 o'clock, what time will it be 100 hours from now?

Let $9+100=109$ and we use 24 hour system. Therefore the divisor will be 24
$109=4(24)+13$
The remainder is 13
In 100 hours it will be 1300 or 1 p.m
Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

Modular arithmetic: Example

a) $17 \bmod 3$

$$
\begin{aligned}
17 & =5(3)+2 \\
r & =2
\end{aligned}
$$

b) $133 \bmod 9$
$-133=-15(9)+2$

$$
r=2
$$

c) $2004 \bmod 101$

$$
\begin{aligned}
2004 & =19(101)+85 \\
r & =85
\end{aligned}
$$

d) $29 \bmod 5$

$$
\begin{aligned}
29 & =5(5)+4 \\
r & =4
\end{aligned}
$$

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

Congruence

$m=q n+r$

$\Rightarrow \quad m$ and r not congruent modulo n

$m \equiv r(\bmod n)$

$m \bmod n=r \bmod n$
\Rightarrow congruent to r modulo n
$\Rightarrow n \mid(m-r)$
nis modulus
Adam Shariff Adli Amir

Mod-n Function

For each $n \in Z^{+}$, we define a function f_{n}, the mod- n function, as follows: If z is a nonnegative integer, then

$$
f_{n}(z)=r, \text { with } z=r(\bmod n) \text { and } 0 \leq r<n .
$$

Example:

$f_{3}(16)=1$ because $16=5(3)+1$ and $16 \equiv 1(\bmod 3)$
$f_{7}(156)=2$ because $156=22(7)+2$ and $156 \equiv 2(\bmod 7)$
$f_{3}(14)=2$ because $14=4(3)+2$ and $14 \equiv 2(\bmod 3)$
$f_{7}(153)=6$??????

Adam Shariff Adli Aminuddin http://ocw.ump.edu.my/course/view.php?id=443

- If f is the mod-7 function, solve $f(z)=2$.

Solution:

$$
\begin{array}{lll}
f_{7}(z)=2 & \Leftrightarrow & z \equiv 2(\bmod 7) \\
& \Leftrightarrow & z=q(7)+2 \\
& & z=0(7)+2=2 \\
\text { if } q=0 ; & & z=1(7)+2=9 \\
\text { if } q=1 ; & & z=2(7)+2=16 \\
\text { if } q=2 ; & & z=3(7)+2=23 \\
\text { if } q=3 ; & & z=3
\end{array}
$$

Therefore, the solution of $f(z)=2$ is $\{2,9,16,23, \ldots\}$
Adam Shariff Adli Aminuddin
http://ocw.ump.edu.my/course/view.php?id=443

