

Mathematics for Management

Chapter 4: Exponential & Logarithmic Functions

by Nor Alisa Mohd Damanhuri and Rahimah Jusoh Faculty of Industrial Sciences & Technology

Content:

4.1 Exponential Functions 4.2 Logarithmic Functions 4.3 Exponential & Logarithmic Equations

Expected Outcome:

Upon successful completion of this course, students will have the ability to:

- 1. Identify the different between exponential and logarithmic function.
- 2. Solve the exponential and logarithmic equation by using the properties.

The function *f* defined by

$$f(x) = b^x$$

where b>0, $b \neq 1$ and the exponent x is any real number. This mathematical expression is called an exponential function with base b.

Rules of Exponent

Exercises:

Suppose that the population of a certain country grows at an annual rate of 2%. If we measure population in millions and time in years, then

 $P(t) = P_0 e^{rt}$

with $P_0 = 3$ and r = 0.2.

- (a) If the current population is 3 million, what will the population be in 10 years?
- (b) How long will it take the population to reach 5 million?

If b > 0 and $b \neq 1$, for a positive value of x the expression

(read "**the logarithm to the base** *b* **of** *x*") denotes that exponent to which *b* must be raised to produce *x*.

• Logarithmic functions can also be viewed as inverses of exponential functions.

$$y = \log_b x$$
 if and only $b^y = x$

For example:

$$\log_2 16 = 4 \quad \leftrightarrow \quad 2^4 = 16$$
$$\log_5 125 = 3 \quad \leftrightarrow \quad 5^3 = 125$$

$$\log_{b}(b^{x}) = x$$
 for all real values of x
 $b^{\log_{b} x} = x$ for $x > 0$

 Mathematics for Management

 by Nor Alisa Mohd Damanhuri

 http://ocw.ump.edu.my/course/view.php?id=440

Properties of Logarithms

(a)
$$\log_{b}(mn) = \log_{b}m + \log_{b}m$$

(b) $\log_{b}\left(\frac{m}{n}\right) = \log_{b}m - \log_{b}n$
(c) $\log_{b}m' = r \log_{b}m$
(d) $\log_{b}\frac{1}{m} = -\log_{b}m$
(e) $\log_{b}1 = 0$
(f) $\log_{b}b = 1$
(g) $\log_{b}m = \frac{\log_{a}m}{\log_{a}b}$

Example:

(1) Solve the following logarithmic functions by using properties

a) $\log 56 = \log (8 \times 7)$ = $\log 8 + \log 7$

 $(property : \log_{b}(mn) = \log_{b}m + \log_{b}n)$

(2) Converting from Exponential to Logarithmic Form

a)
$$5^2 = 25$$
 $\therefore \log_5 25 = 2$

 $(property: y = \log_b x \Leftrightarrow b^y = x)$

b) $10^{\circ} = 1$ \therefore _____

c) $3^4 = 81$...

(3) Converting from Logarithmic to Exponential Form

a)
$$\log_{10} 1000 = 3$$
 $\therefore 10^3 = 1000$

1

$$(property: y = \log_b x \Leftrightarrow b^y = x)$$

b)
$$\log_{64} 8 = \frac{1}{2}$$
 \therefore ______
c) $\log_2 \frac{1}{16} = -4$ \therefore ______

Mathematics for Management by Nor Alisa Mohd Damanhuri http://ocw.ump.edu.my/course/view.php?id=440

Communitising Technology

Exercises:

(4) Solving logarithmic and exponential equations

a)
$$\log_2 x = 4$$

Solution: $x = 2^4 = 16$

b)
$$\ln(x+1) = 7$$

c)
$$\log_3 x = -3$$

d)
$$\log_8 x = \frac{5}{3}$$

e)
$$\log_3 x = 2^{-1}$$

(5) Evaluate the following logarithms without using calculator

 $(a) \log_{3} 81$

Solution : $\log_3(3^4) = 4$

 $(b)\log_3\sqrt{3}$

$$(c)\log_2\left(\frac{\sqrt[3]{16}}{4}\right)$$

(6) Express
$$\log \frac{1}{x^2}$$
 in terms of $\log x$
Solution: $\log \frac{1}{x^2} = \log 1 - \log x^2$
 $= 0 - 2\log x$
 $= -2\log x$

(7) Write $\ln \frac{x}{zw}$ in terms of $\ln z$, $\ln x$ and $\ln w$.

Solution :

(8) Simplify (a) $\ln x - \ln(x+3)$ Solution: $\ln x - \ln(x+3) = \ln \frac{x}{x+3}$

(b)
$$2\log_5 15 - 3\log_5 4 + \frac{3}{2}\log_5 16$$

$$(c) \frac{1}{2} \log_{3} 16 + \frac{1}{3} \log_{3} 8 + 2$$

Mathematics for Management by Nor Alisa Mohd Damanhuri <u>http://ocw.ump.edu.my/course/view.php?id=440</u>

Communitising Technology

(9) Given that $\log 2 = 0.3010$ and $\log 7 = 0.8451$. Evaluate

(a) log 14

Solution:

$$log(2 \times 7) = log 2 + log 7$$

 $= 0.3010 + 0.8451$
 $= 1.1461$

(b)
$$\log \frac{7}{2}$$

(c) $\log 7^{\frac{4}{3}}$

Exponential & Logarithmic Functions

A logarithmic equation is an equation that contain logarithmic expression and a constant unknown.

For example : 2 ln (x + 1) = 9

An exponential equation is an equation where the unknown is an exponent

For example :

$$2^{3x} = 64$$

Properties

Example:

(1) Find x if
$$(25)^{x+2} = 5^{3x-4}$$

Solution:
 $(25)^{x+2} = 5^{3x-4}$
 $(5^2)^{x+2} = 5^{3x-4}$

 $5^{2x+4} = 5^{3x-4}$

x = 8

2x+4=3x-4

(2) Solve $\log_2 x = 5 - \log_2(x+4)$ Solution:

$$\log_{2} x + \log_{2} (x+4) = 5$$

$$\log_{2} x(x+4) = 5$$

$$x^{2} + 4x = 2^{5}$$

$$x^{2} + 4x - 32 = 0$$

$$(x+8)(x-4) = 0$$

$$\therefore x = -8 \text{ and } x = 4$$

(3) Solve
$$9^{x} - 4(3) + 3 = 0$$

Solution:
 $(3^{2})^{x} - 4(3) + 3 = 0$
 $3^{2x} - 4(3) + 3 = 0$
 $3^{2x} - 9 = 0$
 $3^{2x} = 9$
 $3^{2x} = 3^{2}$
∴ $x = 1$

 Mathematics for Management

 by Nor Alisa Mohd Damanhuri

 NC
 SA

(4) Solve
$$\log_4 x + 12 \log_x 4 = 7$$

Solution:

By changing the basis of logarithm, the given equation can be rewritten as

$$\log_4 x + 12\left(\frac{\log_4 4}{\log_4 x}\right) = 7$$
property:
$$\log_b m = \frac{\log_a m}{\log_a b}$$

Let
$$\log_4 x = p$$
. So we get

$$p + \frac{12}{p} = 7$$

$$p^{2} + 12 = 7p$$

$$p^{2} - 7p + 12 = 0$$

$$(p - 4)(p - 3) = 0$$

$$\therefore p = 3 \text{ or } p = 4$$

Thus

$$\log_4 x = 4$$
 or $\log_4 x = 4$
 $x = 4^4$ $x = 4^4$
 $x = 256$ $x = 64$

BY NC SA <u>http://ocw.ump.edu.my/course/view.php?id=440</u>

Exercises:

1. Solve $5 + (3)4^{x-1} = 12$

Solution:

4. Find the values of x of the equation $\left(\frac{1}{4}\right)^{x^2} = 16^{x-4}$. Solution:

- 2. Solve $3^{x}(3^{x+2}) = 27$ Solution:
- 5. Solve the equation $625 \cdot 5^{x^2-1} = 5^{5x-1}$.

Solution:

3. Solve $\log_3 2x^2 = 1 + \log_3 x$

6. Solve
$$2(\log_9 x + \log_x 9) = 5$$

Solution:

Solution:

THE END

~THANK YOU~

Mathematics for Management by Nor Alisa Mohd Damanhuri http://ocw.ump.edu.my/course/view.php?id=440

Communitising Technology

Author Information

noralisa@ump.edu.my rahimahj@ump.edu.my

Mathematics for Management by Nor Alisa Mohd Damanhuri http://ocw.ump.edu.my/course/view.php?id=440

Communitising Technology