PAHANG

Mathematics for Management

Chapter 4: Exponential \& Logarithmic Functions

by

Nor Alisa Mohd Damanhuri and Rahimah Jusoh Faculty of Industrial Sciences \& Technology

Content:

\square 4.1 Exponential Functions
$\square 4.2$ Logarithmic Functions
4.3 Exponential \& Logarithmic Equations

Expected Outcome:

Upon successful completion of this course, students will have the ability to:

1. Identify the different between exponential and logarithmic function.
2. Solve the exponential and logarithmic equation by using the properties.

Mathematics for Management

Exponential Function

Definition:

The function f defined by

$$
f(x)=b^{x}
$$

where $b>0, b \neq 1$ and the exponent x is any real number. This mathematical expression is called an exponential function with base b.

Rules of Exponent

If $a>0, b>0$, where m and n are real numbers, then

1) $a^{m} a^{n}=a^{m+n}$
2) $\frac{a^{m}}{a^{n}}=a^{m-n}$
3) $\left(a^{m}\right)^{n}=a^{m n}$
4) $(a b)^{n}=a^{n} b^{n}$
5) $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
6) $a^{1}=a$
7) $a^{0}=1$
8) $a^{-n}=\frac{1}{a^{n}}$

Exercises:

Suppose that the population of a certain country grows at an annual rate of 2%. If we measure population in millions and time in years, then

$$
P(t)=P_{0} e^{r t}
$$

with $P_{0}=3$ and $r=0.2$.
(a) If the current population is 3 million, what will the population be in 10 years?
(b) How long will it take the population to reach 5 million?

Mathematics for Management by Nor Alisa Mohd Damanhuri
http://ocw.ump.edu.my/course/view.php?id=440

Logarithmic Functions

Definition:

If $b>0$ and $b \neq 1$, for a positive value of x the expression

$$
\log _{b} x
$$

(read "the logarithm to the base b of x ") denotes that exponent to which b must be raised to produce x.

- Logarithmic functions can also be viewed as inverses of exponential functions.

For example:

$$
\begin{aligned}
& \log _{2} 16=4 \leftrightarrow 2^{4}=16 \\
& \log _{5} 125=3 \leftrightarrow 5^{3}=125
\end{aligned}
$$

$$
\begin{array}{ll}
\log _{b}\left(b^{x}\right)=x & \text { for all real values of } x \\
b^{\log x}=x & \text { for } x>0
\end{array}
$$

Properties of Logarithms

(a) $\log _{b}(m n)=\log _{b} m+\log _{b} n$
(b) $\log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n$
(c) $\log _{b} m^{\gamma}=r \log _{b} m$
(d) $\log _{b} \frac{1}{m}=-\log _{b} m$
(e) $\log _{b} 1=0$
(f) $\log _{b} b=1$
(g) $\log _{b} m=\frac{\log _{a} m}{\log _{a} b}$
(1) Solve the following logarithmic functions by using properties
a) $\log 56=\log (8 \times 7)$

$$
=\log 8+\log 7
$$

(property: $\log _{b}(m n)=\log _{b} m+\log _{b} n$)
b) $\log \frac{9}{2}=$

$$
=
$$

\qquad
c) $\log 64=$

$$
=
$$

\qquad
(2) Converting from Exponential to Logarithmic Form
a) $5^{2}=25 \quad \therefore \log _{5} 25=2$
(property: $y=\log _{b} x \Leftrightarrow b^{y}=x$)
b) $10^{\circ}=1 \quad \therefore$ \qquad
c) $3^{4}=81$ \qquad
(3) Converting from Logarithmic to Exponential Form
a) $\log _{10} 1000=3$
$\therefore 10^{3}=1000$

$$
\text { (property: } y=\log _{b} x \Leftrightarrow b^{y}=x \text {) }
$$

b) $\log _{64} 8=\frac{1}{2}$
\therefore \qquad
c) $\log _{2} \frac{1}{16}=-4$ \qquad

Exercises:

(4) Solving logarithmic and exponential equations
a) $\log _{2} x=4$

Solution: $x=2^{4}=16$
b) $\ln (x+1)=7$
c) $\log _{3} x=-3$
d) $\log _{8} x=\frac{5}{3}$
e) $\log _{3} x=2^{-1}$
(5) Evaluate the following logarithms without using calculator
(a) $\log _{3} 81$

Solution : $\log _{3}\left(3^{4}\right)=4$
(b) $\log _{3} \sqrt{3}$
(c) $\log _{2}\left(\frac{\sqrt[3]{16}}{4}\right)$
(6) Express $\log \frac{1}{x^{2}}$ in terms of $\log x$

$$
\text { Solution }: \begin{aligned}
\log \frac{1}{x^{2}} & =\log 1-\log x^{2} \\
& =0-2 \log x \\
& =-2 \log x
\end{aligned}
$$

(7) Write $\ln \frac{x}{z w}$ in terms of $\ln z, \ln x$ and $\ln w$.

Solution:
(8) Simplify
(a) $\ln x-\ln (x+3)$

$$
\text { Solution: } \ln x-\ln (x+3)=\ln \frac{x}{x+3}
$$

(b) $2 \log _{5} 15-3 \log _{5} 4+\frac{3}{2} \log _{5} 16$

$$
\text { (c) } \frac{1}{2} \log _{3} 16+\frac{1}{3} \log _{3} 8+2
$$

(9) Given that $\log 2=0.3010$ and $\log 7=0.8451$. Evaluate
(a) $\log 14$

$$
\begin{aligned}
& \text { Solution: } \\
& \begin{aligned}
\log (2 \times 7) & =\log 2+\log 7 \\
& =0.3010+0.8451 \\
& =1.1461
\end{aligned}
\end{aligned}
$$

(b) $\log \frac{7}{2}$
(c) $\log 7^{\frac{4}{3}}$

Exponential \& Logarithmic Functions

Definition:

* A logarithmic equation is an equation that contain logarithmic expression and a constant unknown.
For example: $2 \ln (x+1)=9$
* An exponential equation is an equation where the unknown is an exponent

For example :

$$
2^{3 x}=64
$$

Properties

+ If $\log _{b} m=\log _{b} n$ then $m=n$
+ If $b^{m}=b^{n}$ then $m=n$

Example:

(1) Find x if $(25)^{x+2}=5^{3 x-4}$

Solution:

$$
\begin{aligned}
& (25)^{x+2}=5^{3 x-4} \\
& \left(5^{2}\right)^{x+2}=5^{3 x-4} \\
& 5^{2 x+4}=5^{3 x-4} \\
& 2 x+4=3 x-4 \\
& x=8
\end{aligned}
$$

(2) Solve $\log _{2} x=5-\log _{2}(x+4)$

Solution:

$$
\begin{aligned}
& \log _{2} x+\log _{2}(x+4)=5 \\
& \log _{2} x(x+4)=5 \\
& x^{2}+4 x=2^{5} \\
& x^{2}+4 x-32=0 \\
&(x+8)(x-4)=0 \\
& \therefore x=-8 \text { and } \quad x=4
\end{aligned}
$$

(3) Solve $9^{x}-4(3)+3=0$

Solution:

$$
\begin{aligned}
& \left(3^{2}\right)^{x}-4(3)+3=0 \\
& 3^{2 x}-4(3)+3=0 \\
& 3^{2 x}-9=0 \\
& 3^{2 x}=9 \\
& 3^{2 x}=3^{2} \\
& \therefore x=1
\end{aligned}
$$

(4) Solve $\log _{4} x+12 \log _{x} 4=7$

Solution:

By changing the basis of logarithm, the given equation can be rewritten as
$\log _{4} x+12\left(\frac{\log _{4} 4}{\log _{4} x}\right)=7$

$$
\text { property: } \log _{b} m=\frac{\log _{a} m}{\log _{a} b}
$$

Let $\log _{4} x=p$. So we get

$$
\begin{aligned}
p+\frac{12}{p} & =7 \\
p^{2}+12 & =7 p \\
p^{2}-7 p+12 & =0 \\
(p-4)(p-3) & =0 \\
\therefore p=3 \text { or } p & =4
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \log _{4} x=4 \quad \text { or } \quad \log _{4} x=4 \\
& x=4^{4} \\
& x=256 \\
& x=4^{4} \\
& x=64
\end{aligned}
$$

Exercises:

1. Solve $5+(3) 4^{x-1}=12$

Solution:
2. Solve $3^{x}\left(3^{x+2}\right)=27$ Solution:
3. Solve $\log _{3} 2 x^{2}=1+\log _{3} x$

Solution:
4. Find the values of x of the equation $\left(\frac{1}{4}\right)^{x^{2}}=16^{x-4}$. Solution:
5. Solve the equation $625 \cdot 5^{x^{2}-1}=5^{5 x-1}$.

Solution:
6. Solve $2\left(\log _{9} x+\log _{x} 9\right)=5$

Solution:

Universiti

THE END

 ~THANK YOU~

Author Information

noralisa@ump.edu.my rahimahj@ump.edu.my

