PAHANG

Mathematics for Management

Chapter 2: Matrix Algebra

by

Nor Alisa Mohd Damanhuri and Ezrinda Mohd Zaihidee Faculty of Industrial Sciences \& Technology

Content:

2.1 Matrix Notation and Terminologies

2.2 Types of Matrices
[2.3 Matrix Operations
$\square 2.4$ Reduced Matrix
$\square 2.5$ Determinant
2.6 Inverse Matrix

Expected Outcome:

Upon the completion of this course, students will have the ability to:

1. Apply the knowledge to solve the identified matrix algebra problems such as manipulate matrix algebra and determinants, apply row operations and elementary matrices.

Matrix Notation \& Terminology

Definition ($m \times n$ Matrix)

a rectangular array of numbers enclosed within brackets that consisting of \boldsymbol{m} horizontal row and \boldsymbol{n} vertical columns,

$$
\mathbf{A}=\left[a_{i j}\right]_{m \times n}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

where $\boldsymbol{i} \boldsymbol{j}$ denotes the entry in the \boldsymbol{i} th row and \boldsymbol{j} th column.
A matrix usually denoted by bold capital letters. Eg:A,B,C

Type of Matrices

Row matrix

A matrix consisting of a single row.
Example:

$$
\left(\begin{array}{lll}
3 & -7 & 10
\end{array}\right)
$$

$>$ Column matrix
A matrix consisting of a single column.
Example:

$$
\left(\begin{array}{l}
1 \\
9 \\
0
\end{array}\right)
$$

$>$ Square matrix
A matrix with the same number of rows and columns, $(m=n)$.
Example:

$$
\left(\begin{array}{cc}
4 & 1 \\
-6 & 2
\end{array}\right)
$$

$>$ Null (zero) matrix, \mathbf{O}
A matrix where all the elements are zero.
Example:

$$
\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)
$$

$>$ Identity matrix, I
A square matrix where the elements in the main diagonal are all 1 's and the others are all zeros.

Example:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

A square matrix where all its elements zeros, except for those in the main diagonal.
Note: Main diagonal is the entries that lie on the diagonal extending from upper left corner to the lower right corner.

Example:

$$
\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 12
\end{array}\right)
$$

$>$ Symmetric matrix
A square matrix where the elements are symmetrical about the main diagonal.
$A=A^{T}$
Example:

$$
\left(\begin{array}{ccc}
4 & -1 & 9 \\
-1 & 0 & 15 \\
9 & 15 & 7
\end{array}\right)
$$

> Upper triangular matrix
A square matrix where all the elements below the main diagonal are zeros.
Example:

$$
\left(\begin{array}{ccc}
-3 & 9 & -2 \\
0 & 1 & 1 \\
0 & 0 & 8
\end{array}\right)
$$

> Lower triangular matrix
A square matrix where all the elements above the main diagonal are zeros.
Example:

$$
\left(\begin{array}{ccc}
-3 & 0 & 0 \\
4 & 1 & 0 \\
-7 & 5 & 8
\end{array}\right)
$$

Transpose of a Matrix

The transpose of $m \times n$ matrix \mathbf{A}, denoted by \mathbf{A}^{T}, is the $n \times m$ matrix whose i th row is the i th column of \mathbf{A}.
\rightarrow interchange its rows with its column.

$$
\mathbf{A}=\left(\begin{array}{ccc}
-3 & 3 & 6 \\
4 & 1 & 0 \\
-7 & 5 & 8
\end{array}\right) \quad, \quad \mathbf{A}^{\mathrm{T}}=\left(\begin{array}{ccc}
-3 & 4 & -7 \\
3 & 1 & 5 \\
6 & 0 & 8
\end{array}\right)
$$

Properties of transposematrix:

$$
\begin{aligned}
& >\left(\mathbf{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathbf{A} \\
& >(\mathbf{A}+\mathbf{B})^{\mathrm{T}}=\mathbf{A}^{\mathrm{T}}+\mathbf{B}^{\mathrm{T}}
\end{aligned}
$$

Example:

$$
\text { If } A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \text {, find } A^{T}
$$

Solution:

$$
A^{\mathrm{T}}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

Exercises:

(a) If $\mathbf{S}=\left(\begin{array}{c}0 \\ -3 \\ 7\end{array}\right)$, find \mathbf{S}^{T}.
(b) If $B=\left(\begin{array}{ccc}4 & 0 & 1 \\ 1 & 5 & 2 \\ -1 & 2 & 7\end{array}\right)$ find B^{T}
(c) If $C=\left(\begin{array}{ll}3 & 5\end{array}\right)$ find C^{T}

Equality of Matrices

Matrices $\mathbf{A}=\left\lfloor a_{i j}\right\rfloor$ and $\mathbf{B}=\left\lfloor b_{i j}\right\rfloor$ are equal if and only if they have the same size and $a_{i j}=b_{i j}$ for each i and j (corresponding entries are equal).

$$
\begin{aligned}
& \mathbf{P}=\left(\begin{array}{ll}
1 & 3 \\
0 & 6
\end{array}\right): \mathbf{Q}=\left(\begin{array}{ll}
1 & 3 \\
0 & 6
\end{array}\right) \Rightarrow \text { Matrices } P \text { and } \mathbf{Q} \text { are equal } \\
& \mathbf{P}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right): \mathbf{Q}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right) \Rightarrow \text { Matrices } P \text { and } \mathbf{Q} \text { are not equal (different order) }
\end{aligned}
$$

Example:

If $\left(\begin{array}{cc}x & y+1 \\ 2 z & 2\end{array}\right)=\left(\begin{array}{ll}2 & 7 \\ 4 & 2\end{array}\right)$, find the value of x, y and z.

Solution:
Comparing element a_{11};

$$
x=2
$$

Comparing element a_{12};

$$
\begin{aligned}
y+1 & =7 \\
y & =7-1 \\
y & =6
\end{aligned}
$$

Comparing element a_{21};

$$
\begin{aligned}
2 z & =4 \\
z & =\frac{4}{2} \\
z & =2
\end{aligned}
$$

Exercises:

(a) If $\left(\begin{array}{cc}3 & p \\ q-4 & 0 \\ 10 & \frac{r}{5}\end{array}\right)=\left(\begin{array}{cc}3 & -2 \\ 7 & 0 \\ 10 & 15\end{array}\right)$, find the value of p, q and r.
(b) If $\left(\begin{array}{cc}1 / 2 & p+q \\ 2 r & r+p\end{array}\right)=\left(\begin{array}{cc}1 / 2 & 2 p \\ 4 & 8\end{array}\right)$, find the value of p, q and r.

Matrix Operations

1. Matrix Addition and Subtraction

If $\mathbf{A}=\left\lfloor a_{i j}\right\rfloor$ and $\mathbf{B}=\left\lfloor b_{i j}\right\rfloor$ are both $m \times n$ matrices, then the $\mathbf{A} \pm \mathbf{B}$ is the $m \times n$ matrix obtained by adding or subtracting corresponding entries of \mathbf{A} and \mathbf{B}, that is

$$
\mathbf{A} \pm \mathbf{B}=\left\lfloor a_{i j} \pm b_{i j}\right\rfloor
$$

$$
\text { If } \mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]
$$

Hence, $\mathbf{A} \pm \mathbf{B}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \pm\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]=\left[\begin{array}{ll}a \pm p & b \pm q \\ c \pm r & d \pm s\end{array}\right]$

Matrix Properties

If $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{O} have the same size,
(a) $\mathbf{A} \pm \mathbf{B}=\mathbf{B} \pm \mathbf{A}$
(b) $\mathbf{A} \pm(\mathbf{B} \pm \mathbf{C})=(\mathbf{A} \pm \mathbf{B}) \pm \mathbf{C} \quad$ (associative)
(c) $\mathbf{A} \pm \mathbf{O}=\mathbf{O}+\mathbf{A}=\mathbf{A} \quad$ (identity)
(commutative)

Example:

Compute the following
a)

$$
\left[\begin{array}{cc}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & -1 \\
1 & 4
\end{array}\right]
$$

b) $\left[\begin{array}{ll}1 & 0 \\ 3 & 4\end{array}\right]-\left[\begin{array}{l}2 \\ 1\end{array}\right]$

Solution:

(a) $\quad\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)+\left(\begin{array}{cc}1 & 0 \\ 0 & -1 \\ 1 & 4\end{array}\right)=\left(\begin{array}{cc}1+1 & 2+0 \\ 3+0 & 4+(-1) \\ 5+1 & 6+4\end{array}\right)=\left(\begin{array}{cc}2 & 2 \\ 3 & 3 \\ 6 & 10\end{array}\right)$
(b) $\quad\left(\begin{array}{ll}1 & 0 \\ 3 & 4\end{array}\right)-\binom{2}{1}$ cannot solve because both matrices have different order.

Exercise:

Given the matrices $\mathbf{P}=\left(\begin{array}{ccc}4 & 2 & 6 \\ 1 & 3 & -7\end{array}\right), \mathbf{Q}=\left(\begin{array}{ll}2 & 5 \\ 3 & 4\end{array}\right)$ and $\mathbf{R}=\left(\begin{array}{ccc}3 & 9 & 0 \\ 4 & -1 & 8\end{array}\right)$. Find the following matrices, if exist.
(a) $P+R$
(b) $\mathbf{R}+\mathbf{Q}$
(c) $\quad \mathrm{R}-\mathrm{P}$

2 Scalar Multiplication

If \mathbf{A} is an $m \times n$ matrix and is a real number (also called a scalar), then by $k \mathbf{A}$, we denote the $m \times n$ matrix obtained by multiplying each entry in \mathbf{A} by k, that is

$$
\text { If } \mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then, $k \mathbf{A}=k\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}k a & k b \\ k c & k d\end{array}\right]$
where k is a real number

Properties

If matrices \mathbf{A}, \mathbf{B} and \mathbf{O} have the same order for any scalar k, k_{1} and k_{2},

$$
\begin{aligned}
& >k(\mathbf{A} \pm \mathbf{B})=k \mathbf{A} \pm k \mathbf{B} \\
& > \\
& >\left(k_{1} \pm k_{2}\right) \mathbf{A}=k_{1} \mathbf{A} \pm k_{2} \mathbf{A} \\
& >
\end{aligned} k_{1}\left(k_{2} \mathbf{A}\right)=\left(k_{1} k_{2}\right) \mathbf{A}, ~(k \mathbf{A})^{T}=k \mathbf{A}^{T} .
$$

Example:

$$
\text { Solve the equation } 3\binom{x_{1}}{x_{2}}-\binom{-1}{2}=4\binom{3}{1}
$$

Solution:

$$
\begin{aligned}
& 3\binom{x_{1}}{x_{2}}-\binom{-1}{2}=4\binom{3}{1} \\
& \binom{3 x_{1}}{3 x_{2}}-\binom{-1}{2}=\binom{4 \times 3}{4 \times 1} \quad 3 x_{1}-(-1)=12 \\
& 3 x_{1}=12-1 \\
& \binom{3 x_{1}}{3 x_{2}}-\binom{-1}{2}=\binom{12}{4}
\end{aligned}
$$

$$
3 x_{2}-2=4
$$

$$
3 x_{2}=4+2
$$

$$
x_{2}=2
$$

Exercise:

Given the matrices $\mathbf{A}=\left(\begin{array}{cc}3 & 2 \\ 0 & 8 \\ 6 & -2\end{array}\right), \mathbf{B}=\left(\begin{array}{cc}9 & -1 \\ 5 & -5 \\ 3 & 4\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{cc}0 & -6 \\ 9 & 2\end{array}\right)$. Find the following matrices, if exist.
(a) $3 \mathrm{~A}+\mathrm{B}$
(b) $2 \mathrm{~B}-\mathrm{A}$
(c) $4 \mathrm{C}+\mathrm{A}$
(d) $-\mathrm{A}+3 \mathrm{~B}$

3 Matrix Multiplication

Let \mathbf{A} be an $m \times n$ matrix and \mathbf{B} be an $n \times p$ matrix. Then the product $\mathbf{A B}$ is the $m \times p$ matrix \mathbf{C} whose entry in row i and column j is obtained as follows: Sum the products formed by multiplying, in order, each entry (that is, first, second, etc.) in row i of \mathbf{A} by the "corresponding" entry (that is, first, second, etc.) in column j of \mathbf{B}.

\mathbf{A}	\times	\mathbf{B}	$=$	\mathbf{C}
$m \mathrm{x} n$		$n \mathrm{x} p$		

Properties

i. $\quad \mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C} \quad$ (associative)

ii. $\quad \mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$ or $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$ (distributive)

Example:

Compute the matrix product.

(a) $\quad\binom{1}{2}\left(\begin{array}{ccc}4 & 5 & 6 \\ 0 & -3 & 1\end{array}\right)$
(b) $\quad\left(\begin{array}{cc}1 & 3 \\ 0 & -5 \\ 2 & 2\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$

Solution:

(a) $\binom{1}{2}_{2 \times 1}\left(\begin{array}{ccc}4 & 5 & 6 \\ 0 & -3 & 1\end{array}\right)_{2 \times 3}$
(b) $\quad\left(\begin{array}{cc}1 & 3 \\ 0 & -5 \\ 2 & 2\end{array}\right)_{3 \times 2}\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)_{2 \times 2}=\left(\begin{array}{cc}(1)(1)+(3)(3) & (1)(2)+(3)(4) \\ (0)(1)+(-5)(3) & (0)(2)+(-5)(4) \\ (2)(1)+(2)(3) & (2)(2)+(2)(4)\end{array}\right)_{3 \times 2}$

$$
=\left(\begin{array}{cc}
1+9 & 2+12 \\
0-15 & 0-20 \\
2+6 & 4+8
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
10 & 14 \\
-15 & -20 \\
8 & 12
\end{array}\right)
$$

Exercise:

Given the matrices $\mathbf{A}=\binom{4}{3}, \mathbf{B}=\left(\begin{array}{cc}2 & 1 \\ -3 & 7\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{ccc}3 & -2 & 1 \\ 2 & 4 & -6\end{array}\right)$. Find the following matrices, if exist.
(a) AB
(b) BA
(c) CA
(d) BC
(e) CB

Reduced Matrix

A matrix is said to be a reduced matrix, provided that all of the following are true:

- If a row does not contain entirely of zeros, then the first nonzero entry in the row, called the leading entry, is $\mathbf{1}$, whereas all other entries in the column in which the 1 appears are zeros.
- The first nonzero entry in each row is to the right of the first nonzero entry in each row above it.
- Any rows that consist entirely of zeros are at the bottom of the matrix

Example:

For each of the following matrices, determine whether it is reduced or not reduced.

$$
\text { 1) }\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \text { 2) }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \text { 3) }\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { 4) }\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

5) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
6) $\left[\begin{array}{llll}0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$ 7) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Solution:

(a) $\quad\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$
no
(e) $\quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
no
(b) $\quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
yes
(c) $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
(f) $\left(\begin{array}{llll}0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right)$
(d) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$
(g) $\quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
no
yes

CC BY NC SA $\begin{aligned} & \text { Mathematics for Management } \\ & \text { by Nor Alisa Mohd Damanhuri } \\ & \text { http://ocw.ump.edu.my/course }\end{aligned}$

Exercise:

For each of the following matrices, determine whetheritis a reduced matrix or not.
(a) $\quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{llll}0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right)$
(c) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Elementary Row Operation

An augmented coefficient matrix is transformed into a row-equivalent matrix if any of the following row operation is performed.
i) two rows are interchanged: \square
ii) a row is multiplied by a non zero constant:

iii) a constant multiple of one row is added to another row

Universiti
Malaysia PAHANG

$$
R_{i} \leftrightarrow R_{j} \longrightarrow\left(\begin{array}{cc|c}
4 & 2 & 10 \\
1 & 3 & 5
\end{array}\right) \quad R_{1} \leftrightarrow R_{2}\left(\begin{array}{ll|l}
1 & 3 & 5 \\
4 & 2 & 10
\end{array}\right)
$$

$k R_{i} \rightarrow R_{i}$

$$
\longrightarrow\left(\begin{array}{ll|l}
1 & 3 & 5 \\
4 & 2 & 10
\end{array}\right) \quad \frac{1}{4} R_{2} \rightarrow R_{2} \quad\left(\begin{array}{ll|l}
1 & 3 & 5 \\
1 & 1 / 2 & 5 / 2
\end{array}\right)
$$

$k R_{i}+R_{j} \rightarrow R_{j}$

$$
\left(\begin{array}{cc|c}
1 & 3 & 5 \\
1 & 1 / 2 & 5 / 2
\end{array}\right) \quad-R_{1}+R_{2} \rightarrow R_{2} \quad\left(\begin{array}{cc|c}
1 & 3 & 5 \\
0 & -5 / 2 & -5 / 2
\end{array}\right)
$$

Types of Solutions

1) If the reduced augmented coefficient matrix has a row of the form

$$
\left[\begin{array}{lll}
0 & 0 & 0 \mid k
\end{array}\right]
$$

where k is a nonzero constant, then the linear system $\mathbf{A X}=\mathbf{B}$ has no solution and inconsistent.

$$
\left(\begin{array}{ccc|c}
1 & 0 & 3 & 7 \\
0 & -1 & 2 & 4 \\
\hdashline 0 & 0 & 0 & 2
\end{array}\right)
$$

2) $\square^{\text {Univerfit }}$
3) If the reduced augmented coefficient matrix has a last row of the form $\quad\left[\begin{array}{lll}0 & j & k \mid l\end{array}\right]$ then the linear system $\mathbf{A X}=\mathbf{B}$ has infinite number of solutions.

$$
=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & -1 \\
\hdashline-1 & -2 & 4 \\
0 & 0 & 0
\end{array}\right) ;
$$

3) If the reduced augmented coefficient matrix has a last row of the form $\quad\left[\begin{array}{lll}0 & 0 & k \mid l\end{array}\right]$ then the linear system $\mathbf{A X}=\mathbf{B}$ has unique solutions.

$$
\left(\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 8
\end{array}\right)
$$

Solving System by Reduced Matrix

The objective is to showhow to reduce a matrix and use matrix reduction to solve a linear system.
Let consider the system of linear equations:

$$
\begin{aligned}
3 x+5 y & =25 \\
x-2 y & =1
\end{aligned}
$$

We can capture all the information contained in the system in the single augmented matrix as

$$
\left(\begin{array}{cc|c}
3 & 5 & 25 \\
1 & -2 & 1
\end{array}\right)
$$

$$
\begin{gathered}
\text { need a } 1 \text { here } \longrightarrow\left(\begin{array}{cc|c}
3 ; & 5 & 25 \\
1 & -2 & 1
\end{array}\right) \quad R_{1} \leftrightarrow R_{2} \\
\text { need a } 0 \text { here } \longrightarrow\left(\begin{array}{cc|c}
1 & -2 & 1 \\
3 & 5 & 25
\end{array}\right)-3 R_{1}+R_{2} \rightarrow R_{2} \\
\text { need a } 1 \text { here }
\end{gathered}
$$

$$
\left(\begin{array}{cc|c}
1 & -2 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Example:

By using matrix reduction, solve the system of linear equations.

$$
\begin{aligned}
2 x+3 y & =-1 \\
2 x+y & =5 \\
x+y & =1
\end{aligned}
$$

$$
\left(\begin{array}{cc|c}
2 & 3 & -1 \\
2 & 1 & 5 \\
1 & 1 & 1
\end{array}\right)
$$

STEP 2 : Matrix reduction using elementary row operations

$$
\begin{aligned}
& \left(\begin{array}{ll|l}
2 & 3 & -1 \\
2 & 1 & 5 \\
1 & 1 & 1
\end{array}\right) \quad R_{1} \leftrightarrow R_{3} \\
& \left(\begin{array}{ll|l}
1 & 1 & 1 \\
2 & 1 & 5 \\
2 & 3 & -1
\end{array}\right) \quad-R_{3}+R_{2} \rightarrow R_{2}
\end{aligned}
$$

$$
\left(\begin{array}{cc|c}
1 & 1 & 1 \\
0 & -2 & 6 \\
2 & 3 & -1
\end{array}\right)-2 R_{1}+R_{3} \rightarrow R_{3}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
1 & 1 & 1 \\
0 & -2 & 6 \\
0 & 1 & -3
\end{array}\right) \quad-\frac{R_{2}}{2} \rightarrow R_{2} \\
& \left(\begin{array}{cc|c}
1 & 1 & 1 \\
0 & 1 & -3 \\
0 & 1 & -3
\end{array}\right)-R_{2}+R_{3} \rightarrow R_{3} \\
& \left(\begin{array}{cc|c}
1 & 1 & 1 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

STEP 3 : Use back substitution to obtain all the answers

$$
\begin{array}{r}
y=-3 \\
x+y=1 \\
x-3=1 \\
x=4
\end{array}
$$

STEP 3 : Use back substitution to obtain all the answers

$$
\begin{aligned}
y & =-3 \\
x+y & =1 \\
x-3 & =1 \\
x & =4
\end{aligned}
$$

STEP 4 : Summarizing up the solution to the system is,

$$
x=4=y=-3
$$

Exercise:

Solve the system of linear equations using matrix reduction.

$$
\begin{aligned}
x+2 y+4 z-6 & =0 \\
2 z+y-3 & =0 \\
x+y+2 z-1 & =0
\end{aligned}
$$

Non-homogeneous and Homogeneous System

Definition:
The system

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=c_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=c_{2} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=c_{m}
\end{gathered}
$$

is called a homogeneous system if $c_{1}=c_{2}=\ldots=c_{m}=0$.
The system is a non-homogeneous system if at least one of the c is not equal to zero.

THEOREM : Number of Solutions of a Homogeneous System

Let \mathbf{A} be the reduced coefficient matrix of a homogeneous system of m linear equations in n unknowns. If \mathbf{A} has exactly k nonzero rows, then $k \leq n$.

Morever

1) If $k<n$, the system has infinitely many solutions.
2) If $k=n$, the system has a unique solution (the trivial solution).
** In a homogeneous system, if the number of equations is less than the number of variables in the system, the system will always have infinitely many solutions.

Exercise:

Given that

$$
\begin{aligned}
x-2 y+z & =0 \\
2 x-y+5 z & =0 \\
x+y+4 z & =0
\end{aligned}
$$

Determine whether the above homogeneous system have a unique solution or infinitely many solutions. Then, solve the system.

Determinant

2x2 Matrix

$$
\begin{aligned}
& \text { Given } \mathbf{A}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \text {, the determinant of } \mathbf{A} \text { is: } \\
& \qquad \operatorname{det} \mathbf{A}=|\mathbf{A}|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}
\end{aligned}
$$

Example:

Find the determinant for the following matrices.
(a) $\mathbf{A}=\left(\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right)$
(b) $\mathbf{P}=\left(\begin{array}{cc}-3 & 6 \\ 5 & -2\end{array}\right)$

Solution:
(a) $\quad|\mathbf{A}|=\left|\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right|=4(3)-5(2)$

$$
=2
$$

(b) $\quad|\mathbf{P}|=\left|\begin{array}{cc}-3 & 6 \\ 5 & -2\end{array}\right|=-3(-2)-5(6)$

$$
=-24
$$

Exercise:

Find the determinant for the following matrices.

(a) $\mathbf{A}=\left(\begin{array}{cc}-4 & 1 \\ 2 & 8\end{array}\right)$
(b) $\mathbf{S}=\left(\begin{array}{cc}2 & 0 \\ 5 & -2\end{array}\right)$

3x3 Matrix

There are two methods to find determinant 3×3 matrices. Given $\mathbf{A}=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$, the
determinant of \mathbf{A} is:
(1) Method 1

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left(a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}\right)-\left(a_{13} a_{22} a_{31}+a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}\right)
$$

(2) Method 2

$$
\begin{aligned}
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| & =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{aligned}
$$

Example:

Find the determinant of $\left|\begin{array}{ccc}2 & 3 & -1 \\ 4 & 0 & 5 \\ 3 & -2 & 1\end{array}\right|$

Method 2:

$$
\begin{aligned}
\left|\begin{array}{ccc}
2 & 3 & -1 \\
4 & 0 & 5 \\
3 & -2 & 1
\end{array}\right| & =2\left|\begin{array}{cc}
0 & 5 \\
-2 & 1
\end{array}\right|-3\left|\begin{array}{cc}
4 & 5 \\
3 & 1
\end{array}\right|+(-1)\left|\begin{array}{cc}
4 & 0 \\
3 & -2
\end{array}\right| \\
& =2(0+10)-3(4-15)-(-8-0) \\
& =20+33+8 \\
& =61
\end{aligned}
$$

Exercise:

Inverse

- Objective: To determine the inverse of an invertible matrix and to use inverses to solve system.
- Definition: If \mathbf{A} is a square matrix and there exists a matrix \mathbf{C} such that $\mathbf{C A}=\mathbf{I}$, then \mathbf{C} is called an inverse of \mathbf{A}, and \mathbf{A} is said to be invertible.

The matrix A is invertible if there exists a matrix A^{-1} such that

$$
\mathrm{A}^{-1} \mathrm{~A}=\mathrm{AA}^{-1}=\mathbf{I}
$$

2.6.1) Inverse by Adjoint Method

If \mathbf{A} is a square matrix, the transpose matrix of matrix cofactor
\mathbf{A} is known as adjoint of matrix \mathbf{A} and is denoted by $\operatorname{Adj}(\mathbf{A})=\mathbf{C}^{\mathrm{T}}$, where \mathbf{C} is the cofactor of matrix \mathbf{A}. If $|\mathbf{A}| \neq 0$ (non singular), then the inverse matrix

$$
\mathbf{A}^{-1}=\frac{1}{|\mathbf{A}|} \operatorname{Adj}(\mathbf{A})
$$

2x2 Matrix

In the case of a 2×2 matrix, a simple formula exists to find its adjoint matrix

$$
\text { If } \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { then } \operatorname{Adj}(A)=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example:

Find the adjoint matrix of $\left(\begin{array}{ll}-9 & 0 \\ -1 & 3\end{array}\right)$.

Solution:

$$
\left(\begin{array}{cc}
3 & 0 \\
1 & -9
\end{array}\right)
$$

Example:

$$
\text { Given } \mathbf{A}=\left(\begin{array}{ll}
3 & 1 \\
4 & 2
\end{array}\right) \text {, find its inverse. }
$$

Solution:

$$
\mathbf{A}^{-1}=\frac{1}{(3)(2)-(4)(1)}\left(\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right)
$$

$$
=\frac{1}{2}\left(\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
\frac{2}{2} & -\frac{1}{2} \\
-\frac{4}{2} & \frac{3}{2}
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
1 & -\frac{1}{2} \\
-2 & \frac{3}{2}
\end{array}\right)
$$

3x3 Matrix

- Consider the matrix \mathbf{A} of order $3 \times 3, \quad \mathbf{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

Suppose that we choose any entry, say a_{21}, and strike out the row and column that pass through a_{21}, then we will obtain

$$
M_{21}=\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|=a_{12} a_{33}-a_{13} a_{32}
$$

which called the minor of the entry

The value of $C_{i j}=(-1)^{i+j} M_{i j}$ is called the cofactor
of the entry as summarize in the diagram below.

$$
\left|\begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right|
$$

So, we can get the adjoint matrix,

$$
\operatorname{adj} \mathbf{A}=\mathbf{C}^{\mathrm{T}}=\left(\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right)^{\mathrm{T}}
$$

Example:

Given $\mathbf{A}=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$, find
(a) M_{11}
(b) M_{13}
(c) M_{22}
(d) C_{32}

Solution:

(a)

(b)

(c) $\mathbf{A}=\left(\begin{array}{lll}a_{11} & d_{12} & a_{13} \\ a_{21} & d_{22} & a_{23} \\ a_{31} & d_{32} & a_{33}\end{array}\right) \quad \rightarrow \quad M_{22}=\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right|$
(d) $\mathbf{A}=\left(\begin{array}{lll}a_{11} & d_{12} & a_{13} \\ a_{21} & d_{22} & a_{23} \\ a_{31} & d_{32} & a_{33}\end{array}\right)$

$$
\rightarrow \quad C_{32}=-M_{32}=-\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|
$$

Example:

Given $\mathbf{A}=\left(\begin{array}{ccc}1 & -2 & 0 \\ 3 & 1 & 5 \\ -1 & 2 & 3\end{array}\right)$, find $\operatorname{adj} \mathbf{A}$. Hence, find its inverse, \mathbf{A}^{-1}.

Solution:

$$
\begin{aligned}
\operatorname{adj} \mathbf{A} & =\left(\begin{array}{ccc}
+\left|\begin{array}{cc}
1 & 5 \\
2 & 3
\end{array}\right| & -\left|\begin{array}{cc}
3 & 5 \\
-1 & 3
\end{array}\right| & +\left|\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right| \\
-\left|\begin{array}{cc}
-2 & 0 \\
2 & 3
\end{array}\right| & +\left|\begin{array}{cc}
1 & 0 \\
-1 & 3
\end{array}\right| & -\left|\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right| \\
+\left|\begin{array}{cc}
-2 & 0 \\
1 & 5
\end{array}\right| & -\left|\begin{array}{cc}
1 & 0 \\
3 & 5
\end{array}\right| & +\left|\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right|
\end{array}\right)^{\mathrm{T}} \\
& =\left(\begin{array}{ccc}
-7 & -14 & 7 \\
6 & 3 & 0 \\
-10 & -5 & 7
\end{array}\right)^{\mathrm{T}} \\
& =\left(\begin{array}{ccc}
-7 & 6 & -10 \\
-14 & 3 & -5 \\
7 & 0 & 7
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
|\mathbf{A}| & =\left|\begin{array}{ll}
1 & 5 \\
2 & 3
\end{array}\right|-(-2)\left|\begin{array}{cc}
3 & 5 \\
-1 & 3
\end{array}\right|+0 \\
& =-7+28 \\
& =21
\end{aligned}
$$

$$
\mathbf{A}^{-1}=\frac{1}{21}\left(\begin{array}{ccc}
-7 & 6 & -10 \\
-14 & 3 & -5 \\
7 & 0 & 7
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
-\frac{1}{3} & \frac{6}{21} & -\frac{10}{21} \\
-\frac{2}{3} & \frac{3}{21} & -\frac{5}{21} \\
\frac{1}{3} & 0 & \frac{1}{3}
\end{array}\right)
$$

Exercises:

1. Given $\mathbf{A}=\left(\begin{array}{ccc}5 & 2 & -1 \\ 7 & 1 & 0 \\ 3 & -1 & 2\end{array}\right)$, find
(a) $\quad M_{12}$
(b) M_{23}
(c) M_{33}
(d) C_{21}
2. Given $\mathbf{A}=\left(\begin{array}{ccc}1 & -2 & 0 \\ 3 & 1 & 5 \\ -1 & 2 & 3\end{array}\right)$, find $\operatorname{adj} \mathbf{A}$. Hence, find its inverse, \mathbf{A}^{-1}.

Inverse Matrix by Elementary Row Operation

If $[\mathbf{A} \mid \mathbf{I}]$ can be transformed by elementary row operation to $\left.|\mathbf{I}| A^{-1}\right\rfloor$, then the resulting matrix \mathbf{M} is
If a matrix \mathbf{A} does not reduce to \mathbf{I}, then \mathbf{A}^{-1} does not exist.

Example:

Example 2.6.2.1:

Solution:

$$
\begin{aligned}
& \left(\begin{array}{lll|lll}
3 & 3 & 4 & 1 & 0 & 0 \\
4 & 3 & 2 & 0 & 1 & 0 \\
2 & 2 & 3 & 0 & 0 & 1
\end{array}\right) \quad \frac{1}{3} R_{1} \rightarrow R_{1} \\
& \left(\begin{array}{lll|lll}
1 & 1 & \frac{4}{3} & \frac{1}{3} & 0 & 0 \\
4 & 3 & 2 & 0 & 1 & 0 \\
2 & 2 & 3 & 0 & 0 & 1
\end{array}\right) \quad-2 R_{3}+R_{2} \rightarrow R_{2}
\end{aligned}
$$

$$
\left(\begin{array}{ccc|ccc}
1 & 1 & \frac{4}{3} & \frac{1}{3} & 0 & 0 \\
0 & -1 & -4 & 0 & 1 & -2 \\
2 & 2 & 3 & 0 & 0 & 1
\end{array}\right) \quad-2 R_{1}+R_{3} \rightarrow R_{3}
$$

$$
\left(\begin{array}{ccc|ccc}
1 & 1 & \frac{4}{3} & \frac{1}{3} & 0 & 0 \\
0 & -1 & -4 & 0 & 1 & -2 \\
0 & 0 & \frac{1}{3} & -\frac{2}{3} & 0 & 1
\end{array}\right)
$$

$$
R_{2}+R_{1} \rightarrow R_{1}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & 0 & -\frac{8}{3} & \frac{1}{3} & 1 & -2 \\
0 & -1 & -4 & 0 & 1 & -2 \\
0 & 0 & \frac{1}{3} & -\frac{2}{3} & 0 & 1
\end{array}\right) \quad-R_{2} \rightarrow R_{2} \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & -\frac{8}{3} & \frac{1}{3} & 1 & -2 \\
0 & 1 & 4 & 0 & -1 & 2 \\
0 & 0 & \frac{1}{3} & -\frac{2}{3} & 0 & 1
\end{array}\right) \quad 8 R_{3}+R_{1} \rightarrow R_{1} \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -5 & 1 & 6 \\
0 & 1 & 4 & 0 & -1 & 2 \\
0 & 0 & \frac{1}{3} & -\frac{2}{3} & 0 & 1
\end{array}\right) \quad-12 R_{3}+R_{2} \rightarrow R_{2} \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -5 & 1 & 6 \\
0 & 1 & 0 & 8 & -1 & -10 \\
0 & 0 & \frac{1}{3} & -\frac{2}{3} & 0 & 1
\end{array}\right) \\
& 3 R_{3} \rightarrow R_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -5 & 1 & 6 \\
0 & 1 & 0 & 8 & -1 & -10 \\
0 & 0 & 1 & -2 & 0 & 3
\end{array}\right) \\
& \therefore \mathbf{P}^{-1}=\left(\begin{array}{ccc}
-5 & 1 & 6 \\
8 & -1 & -10 \\
-2 & 0 & 3
\end{array}\right)
\end{aligned}
$$

Exercise:

Find the inverse of $\mathbf{A}=\left(\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right)$ using elementary row operations.

Solving System by Inverse Matrix

Solve the system

$$
\begin{aligned}
x_{1}-2 x_{3}= & 1 \\
4 x_{1}-2 x_{2}+x_{3}= & 2 \\
x_{1}+2 x_{2}-10 x_{3}= & -1
\end{aligned}
$$

by finding the inverse of the coefficient matrix.

Solve by using adjoint matrix

$$
\left.\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & -2 \\
4 & -2 & 1 \\
1 & 2 & -10
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \\
& \operatorname{addj} \mathbf{A}=\left(\left.\begin{array}{cc}
+\left|\begin{array}{cc}
-2 & 1 \\
2 & -10
\end{array}\right| & -\left|\begin{array}{cc}
4 & 1 \\
1 & -10
\end{array}\right| \\
-\left|\begin{array}{cc}
0 & -2 \\
2 & -10
\end{array}\right| & +\left|\begin{array}{cc}
1 & -2 \\
1 & -2
\end{array}\right| \\
+\left|\begin{array}{cc}
0 & -2 \\
-2 & 1
\end{array}\right| & -\left|\begin{array}{cc}
1 & 0 \\
1 & 2
\end{array}\right| \\
4 & -2
\end{array} \right\rvert\,\right. \\
& \hline 1
\end{aligned} \right\rvert\,
$$

$$
=\left(\begin{array}{ccc}
18 & 41 & 10 \\
-4 & -8 & -2 \\
-4 & -9 & -2
\end{array}\right)^{\mathrm{T}}
$$

$$
=\left(\begin{array}{lll}
18 & -4 & -4 \\
41 & -8 & -9 \\
10 & -2 & -2
\end{array}\right)
$$

$$
\begin{aligned}
|\mathbf{A}| & =1\left|\begin{array}{cc}
-2 & 1 \\
2 & -10
\end{array}\right|-0+(-2)\left|\begin{array}{cc}
4 & -2 \\
1 & 2
\end{array}\right| \\
& =18-20 \\
& =-2
\end{aligned}
$$

$$
\mathbf{A}^{-1}=-\frac{1}{2}\left(\begin{array}{lll}
18 & -4 & -4 \\
41 & -8 & -9 \\
10 & -2 & -2
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
-9 & 2 & 2 \\
-\frac{41}{2} & 4 & \frac{9}{2} \\
-5 & 1 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{lll}
-9 & 2 & 2 \\
-\frac{41}{2} & 4 & \frac{9}{2} \\
-5 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-7 \\
-17 \\
-4
\end{array}\right)
$$

Solve by using ERO

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
4 & -2 & 1 & 0 & 1 & 0 \\
1 & 2 & -10 & 0 & 0 & 1
\end{array}\right) \quad-4 R_{1}+R_{2} \rightarrow R_{2} \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & -2 & 9 & -4 & 1 & 0 \\
1 & 2 & -10 & 0 & 0 & 1
\end{array}\right) \quad-R_{1}+R_{3} \rightarrow R_{3} \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & -2 & 9 & -4 & 1 & 0 \\
0 & 2 & -8 & -1 & 0 & 1
\end{array}\right) \quad-\frac{1}{2} R_{2} \rightarrow R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -\frac{9}{2} & 2 & -\frac{1}{2} & 0 \\
0 & 2 & -8 & -1 & 0 & 1
\end{array}\right) \quad-2 R_{2}+R_{3} \rightarrow R_{3} \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -\frac{9}{2} & 2 & -\frac{1}{2} & 0 \\
0 & 0 & 1 & -5 & 1 & 1
\end{array}\right) \quad 2 R_{3}+R_{1} \rightarrow R_{1} \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -9 & 2 & 2 \\
0 & 1 & -\frac{9}{2} & 2 & -\frac{1}{2} & 0 \\
0 & 0 & 1 & -5 & 1 & 1
\end{array}\right) \quad \frac{9}{2} R_{3}+R_{2} \rightarrow R_{2} \\
& \left(\begin{array}{lll|ll}
1 & 0 & 0 & -9 & 2
\end{array}\right. \\
& 0
\end{aligned} 1
$$

$$
\mathbf{A}^{-1}=\left(\begin{array}{ccc}
-9 & 2 & 2 \\
-\frac{41}{2} & 4 & \frac{9}{2} \\
-5 & 1 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{lll}
-9 & 2 & 2 \\
-\frac{41}{2} & 4 & \frac{9}{2} \\
-5 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-7 \\
-17 \\
-4
\end{array}\right)
$$

Exercise:

Solve the system of linear equation by finding the inverse of the coefficient matrix.

$$
\begin{aligned}
x+2 y+z & =12 \\
3 y-4 z & =4 \\
2 x+y+z & =10
\end{aligned}
$$

THE END ~THANK YOU~

Authors Information

noralisa@ump.edu.my ezrinda@ump.edu.my

