Thermodynamics Tutorial: Properties of Pure Substances

Exercises:

1. Determine the saturated pressure, specific volume, internal energy and enthalphy for
a) Saturated vapor at $70^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$
b) Saturated vapor at $77^{\circ} \mathrm{C}$
c) Saturated liquid at $100^{\circ} \mathrm{C}$ and $303.5^{\circ} \mathrm{C}$
d) Superheated water at 25 bar and $320^{\circ} \mathrm{C}$
2. Determine the saturated temperature, specific volume, internal energy and enthalphy for
a) Saturated liquid at 1bar and 20bar
b) Compressed liquid water at 50 bar and $140^{\circ} \mathrm{C}$
c) Saturated vapor refrigerant-134a at 5 bar and 930 kPa
3. Complete the missing properties in the following table using saturated R-134a

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{P}_{\text {sat }}(\mathrm{kPa})$	$\mathrm{V}_{\mathrm{f}}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	$\mathrm{V}_{\mathrm{g}}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	$\mathrm{u}_{\mathrm{fg}}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}_{\mathrm{fg}}(\mathrm{kJ} / \mathrm{kg})$
	646.18	0.0008261			
-10			0.099516		
-14	170.93				
				130.88	149.39
100				29.19	

4. For a steam at 2000 kPa with quality of 0.9 , calculate the specific volume, specific enthalpy and specific internal energy. Sketch the process in the form of a P-v diagram. [Ans: $0.0896 \mathrm{~m}^{3} / \mathrm{kg}$, $2609.29 \mathrm{~kJ} / \mathrm{kg}, 2429.8 \mathrm{~kJ} / \mathrm{kg}]$
5. Determine the enthalpy of 2.5 kg of water contained in a volume of $2 \mathrm{~m}^{3}$ at 2 bar . [Ans: $2493.1 \mathrm{~kJ} / \mathrm{kg}$]
6. Determine the internal energy of R-13a at a temperature of $0^{\circ} \mathrm{C}$ and a quality of 60% [Ans:158.748kJ/kg]
7. Find the quality, specific volume and specific enthalpy of steam at 950 kPa and specific internal energy $2450 \mathrm{~kJ} / \mathrm{kg}$ [Ans:0.93, $0.1898 \mathrm{~m}^{3} / \mathrm{kg}, 2633.57 \mathrm{~kJ} / \mathrm{kg}$]
8. The pressure inside closed, rigid tank of water are 7bar and the mass of the saturated liquid is 2 kg and the mass of the saturated vapor is 0.25 kg . Heat is added to the water until the pressure increases to 80bar. Find the final temperature, enthalpy and internal energy of the water. [Ans:350.29${ }^{\circ} \mathrm{C}, 2988.97 \mathrm{~kJ} / \mathrm{kg}, 2748.97 \mathrm{~kJ} / \mathrm{kg}$]
9. Steam at 100 bar has a specific volume of $0.02812 \mathrm{~m}^{3} / \mathrm{kg}$. Find the temperature, specific enthalpy and specific internal energy. [Ans: $425.21^{\circ} \mathrm{C}, 2889.27 \mathrm{~kJ} / \mathrm{kg}, 3170.56 \mathrm{~kJ} / \mathrm{kg}$]
10. Steam at 225 kPa is contained in a $0.9 \mathrm{~m}^{3}$ rigid cylinder. The cylinder is cooled until the pressure is drop to 175 kPa at constant volume. Calculate mass of steam in the cylinder and quality at final state. [Ans:1.1345kg, 0.79]

Exercises:

1. A air gas inside a rigid tank has volume $0.05 \mathrm{~m}^{3}$, pressure of 350 kPa and temperature of 400 K . The gas is compressed until the pressure increase to 2 MPa .Calculate the mass of the gas and the final temperature of gas. Given the value of gas constant is $0.287 \mathrm{~kJ} / \mathrm{kgK} \quad[0.1524 \mathrm{~kg}$, 2285.71 K]
2. Calculate how many moles of gas would be present in a a gas trapped in vessel with volume 0.1 L , pressure of 3 atmospheres and temperature of 300 K . Given the value of R is 0.082057 L atm/molK [0.012mole]
3. A 0.2 mole of nitrogen gas inside a tank occupy $0.01 \mathrm{~m}^{3}$ at $30^{\circ} \mathrm{C}$. Calculate the pressure. Given the value of R is $0.082057 \mathrm{~L} \mathrm{~atm} / \mathrm{molK} \quad[0.498 \mathrm{~atm}$]
4. A 80 g of gas contained in a $0.05 \mathrm{~m}^{3}$ cylinder at a pressure of 200 atm and temperature of 310 K . Calculate how many moles of gas and what is its molecular weight of the gas. Given the value of R is $0.082057 \mathrm{~L} \mathrm{~atm} / \mathrm{molK}$ [$393.12 \mathrm{moles}, 2.035 \times 10^{-4} \mathrm{~kg} / \mathrm{mole}$]
5. A 0.05 kg of ideal gas occupies a volume of $0.008 \mathrm{~m}^{3}$ at a pressure of 7 bar and temperature of 400 K . Calculate the molecular weight of gas. The gas is heated and expand until the pressure is 2bar and volume is $0.07 \mathrm{~m}^{3}$. Determine the final temperature. Given the value of gas constant is 287J/kgK [0.103kg/mole,1000K]
6. A nitrogen gas inside a $2 \mathrm{~m}^{3}$ rigid tank has presure of 2 bar and 600 K are connected by a valce to another tank of $1 \mathrm{~m}^{3}$ with nitrogen at 4.5 bar and 700 K . The valve is opened and the two tanks reach equilibrium temperature at 650 K . Determine the equilibrium pressure. [283.73kPa]
7. A $1 \mathrm{~m}^{3}$ cylinder has propane at $25^{\circ} \mathrm{C}$ and 5 bar is connected through a valve to another cylinder of propane at $35^{\circ} \mathrm{C}$ and 2 bar. The valve is opened and the entire system is allowed to reach thermal equilibrium at $20^{\circ} \mathrm{C}$. Find the volume of second tank and the equilibrium pressure of propane. [$2.58 \mathrm{~m}^{3}, 274.44 \mathrm{kPa}$]
8. A cylindrical gas tank with 2 m long and diameter 10 cm is evacuated and filled with carbon dioxide gas at $25^{\circ} \mathrm{C}$. Determine the pressure should be charged if there should be 2 kg of carbon dioxide? Given the value of R is $8.3144 \mathrm{~J} / \mathrm{molK}$, atomic mass for carbon is 12 and oxygen is 16. [7.184Pa]
9. A tank contains 4 kg of gas is heated at a constant volume of $1 \mathrm{~m}^{3}$ and temperature $20^{\circ} \mathrm{C}$ until reach temperature of $150^{\circ} \mathrm{C}$. Assume the gas is ideal gas, determine the heat flow during the process, the initial pressure of gas and the final pressure of gas. Given c_{v} is $0.72 \mathrm{~kJ} / \mathrm{kgK}$ and R is $287 \mathrm{~J} / \mathrm{kgK}$. [374.4kJ, 336.54kPa, 485.78kPa]
10. 10 g of a gas receive 200 kJ as heat at constant volume process. If the temperature of the gas increases by $100^{\circ} \mathrm{C}$, determine the Cv of the process. [$53.598 \mathrm{~kJ} / \mathrm{kgK}$]
11. A certain ideal gas has specific heat as follows C_{p} is $0.846 \mathrm{~kJ} / \mathrm{kgK}$ and C_{v} is $0.657 \mathrm{~kJ} / \mathrm{kgK}$. Determine the value of the gas constant. [0.189kJ/kgK]

Exercises:

1. An ideal gas is heated at a constant temperature of $0.22 \mathrm{~m}^{3}$ and $325 \mathrm{kN} / \mathrm{m}^{2}$ until final state of $170 \mathrm{kN} / \mathrm{m}^{2}$. Determine the final volume of the gas.
2. An ideal gas is heated at a constant temperature of 2 bar until final state of 1 bar and volume $1 \mathrm{~m}^{3}$. Determine the initial volume of the gas.
3. An ideal gas undergoes a constant pressure process with an initial volume at $0.54 \mathrm{~m}^{3}$ and $345^{\circ} \mathrm{C}$ respectively. If the volume of the system is decrease to $0.32 \mathrm{~m}^{3}$, determine the final temperature of the gas.
4. An ideal gas is contained in a closed tank with an initial pressure and temperature of 2.2bar and $70^{\circ} \mathrm{C}$ respectively. If the volume of the system is increased 1.5 times and the temperature drops to $15^{\circ} \mathrm{C}$, determine the final pressure of the gas.
5. A closed assembly contains 2 kg of air at an initial pressure and temperature of 140 kPa and $210^{\circ} \mathrm{C}$ respectively. If the colume of the system is doubled and temperature drops to $37^{\circ} \mathrm{C}$, determine the final pressure of the air. Assume air as an ideal gas.
