

BFF1113 Engineering Materials

DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

Course Guidelines:

- 1. Introduction to Engineering Materials
- 2. Bonding and Properties
- 3. Crystal Structures & Properties
- 4. Imperfection in Solids
- 5. Mechanical Properties of Materials
- 6. <u>Physical Properties of Materials</u>
- 7. Failure & Fundamental of Fracture
- 8. Metal Alloys
- 9. Phase Diagram
- 10. Phase Transformation Heat Treatment
- 11. Processing and Application of Metals
- 12. Ceramic Materials
- 13. Polymer Materials
- 14. Composite Materials
- 15. Corrosion & Degradation of Materials
- 16. Environment and Sustainability

PHYSICAL PROPERTIES OF MATERIALS

- 1. Density
- 2. Melting Point
- 3. Thermal properties
- 4. Electrical Properties
- 5. Magnetic properties
- 6. Optical Properties

Introduction

- Important criterion in material selection is consideration of physical properties, including:
 - 1. Density
 - 2. Melting point
 - 3. Thermal properties
 - 4. Electrical properties
 - 5. Magnetic properties
 - 6. Optical properties

1.0: Density

- **Density** of a material is its mass per unit volume
- Specific gravity is expresses as a material's density in relation to that of water (1 g/cm³) We would need to have strength-to-weight ratio (specific strength) and stiffness-to-weight ratio (specific stiffness) of materials and structures
- Weight saving is important to aircraft and aerospace structures

Density

Physical Properties of Selected Materials at Room Temperature									
	Density (kg/m ³)	Melting point (°C)	Specific heat (J/kg K)	Thermal conductivity (W/m K)	Coefficient of thermal expansion (µm/m-°C)	Electrical resistivity (Ω-m)			
Metallic									
Aluminum	2700	660	900	222	23.6	$2.8 imes10^{-8}$			
Aluminum alloys	2630-2820	476-654	880-920	121-239	23.0-23.6	$2.8 - 4.0 imes 10^{-8}$			
Beryllium	1854	1278	1884	146	8.5	$4.0 imes 10^{-8}$			
Columbium (niobium)	8580	2468	272	52	7.1	$15 imes 10^{-8}$			
Copper	8970	1082	385	393	16.5	$1.7 imes10^{-8}$			
Copper alloys	7470-8940	885-1260	377-435	29-234	16.5-20	$1.7 - 5.9 imes 10^{-8}$			
Gold	19,300	1063	129	317	19.3	$2.4 imes10^{-8}$			
Iron	7860	1537	460	74	11.5	$9.5 imes10^{-8}$			
Steels	6920-9130	1371-1532	448-502	15-52	11.7-17.3	17.0×10^{-8}			
Lead	11,350	327	130	35	29.4	$20.6 imes 10^{-8}$			
Lead alloys	8850-11,350	182-326	126-188	24-46	27.1-31.1	$20.6-24 imes 10^{-8}$			
Magnesium	1745	650	1025	154	26.0	$4.5 imes 10^{-8}$			
Magnesium alloys	1770-1780	610-621	1046	75-138	26.0	$4.5 - 15.9 imes 10^{-8}$			
Molybdenum alloys	10,210	2610	276	142	5.1	$5.3 imes10^{-8}$			
Nickel	8910	1453	440	92	13.3	$6.2 imes10^{-8}$			
Nickel alloys	7750-8850	1110-1454	381-544	12-63	12.7-18.4	$6.2 - 110 \times 10^{-8}$			
Silicon	2330	1423	712	148	7.63	$1.0 imes 10^{-3}$			
Silver	10,500	961	235	429	19.3	$1.6 imes10^{-8}$			
Tantalum alloys	16,600	2996	142	54	6.5	13.5×10^{-8}			
Titanium	4510	1668	519	17	8.35	42×10^{-8}			
Titanium alloys	4430-4700	1549-1649	502-544	8-12	8.1-9.5	$40-171 \times 10^{-8}$			
Tungsten	19,290	3410	138	166	4.5	$5 imes 10^{-8}$			
Zinc	7140	419	385	113	32.5	$5.45 imes 10^{-8}$			
Zinc alloys	6640–7200	386-525	402	105-113	32.5-35	$6.06 - 6.89 imes 10^{-8}$			
Nonmetallic									
Ceramics	2300-5500	_	750–950	10-17	5.5-13.5	_			
Glasses	2400-2700	580-1540	500-850	0.6-1.7	4.6-70	_			
Graphite	1900-2200	_	840	5-10	7.86	—			
Plastics	900-2000	110-330	1000-2000	0.1-0.4	72-200	—			
Wood	400-700	_	2400-2800	0.1-0.4	2-60	_			

Density

2.0: Melting Point

- Melting point of a material depends on the energy required to separate its atoms
- Annealing, heat treating and hot-working require a knowledge of the melting points of the materials involved
- Higher the melting point of the material, the more difficult the operation becomes

VIDEO – MELTING POINT

3.0: Thermal properties

Thermal conductivity is the rate at which heat flows within and through a material

- Thermal expansion is the tendency of matter to change in volume in response to a change in temperature, through heat transfer.
- Solid materials expand when heated and contract when cooled.
- The fractional change in length, area or volume is proportional to the temperature change, the constant of proportionality being the coefficient of thermal expansion.
- The coefficient of thermal expansion describes how the size of an object changes with a change in temperature. The larger the interatomic bonding energy, the lower the coefficient of thermal expansion.
- Thermal expansion can cause thermal stresses due to temperature gradients
- To reduce thermal stresses, a combination of high thermal conductivity and low thermal expansion is desirable
- <u>Specific heat capacity</u> of a material is the amount of heat required to change a unit mass (or unit quantity, such as mole) of a substance by one degree in temperature.

Equation Summary

Equation Number	Equation	Solving for	Page Number 782
19.1	$C = \frac{dQ}{dT}$	Definition of heat capacity	
19.3a	$\frac{l_f - l_0}{l_0} = \alpha_l (T_f - T_0)$	Definition of linear coefficient of thermal	785
19.3b	$rac{\Delta l}{l_0} = lpha_l \Delta T$	expansion	
19.4	$\frac{\Delta V}{V_0} = \alpha_v \Delta T$	Definition of volume coefficient of thermal expansion	786
19.5	$q = -k \frac{dT}{dx}$	Definition of thermal conductivity	789
19.8	$\sigma = E\alpha_l(T_0 - T_f)$ $= E\alpha_l \Delta T$	Thermal stress	792
19.9	$TSR \cong \frac{\sigma_f k}{E\alpha_l}$	Thermal shock resistance parameter	794

4.0: Electrical properties

Electrical conductivity is the measure of a material's ability to accommodate the transport of an **electric** charge.

Semiconductivity

٠

- The electrical properties of *semiconductors* are extremely sensitive to temperature
- Properties is controlled by the concentration and type of impurities (**dopants**)

Dielectric behaviour

- Dielectric Strength
- *Dielectric strength* is defined as the voltage required per unit distance for electrical breakdown
- Units is V/m
- Application: use as insulator in capacitor

Conductors & insulators Video

Piezoelectricity

- The *piezoelectric effect* is exhibited by **smart materials; used in sound detection, high voltage generation; transducer.**
- 2 behaviours are involved:
- 1. When deformed by an external force, the materials emit a small electric current
- 2. When subjected to an electric current, materials undergo a reversible change in shape

For example, lead zirconate titanate crystals will generate measurable piezoelectricity when their static structure is deformed by about 0.1% of the original dimension. Conversely, those same crystals will change about 0.1% of their static dimension when an external electric field is applied to the material

Universiti Malaysia PAHANG Engineering • Technology • Creativity

5.0: Magnetic Properties

What is magnet ?

- Materials may be classified by their response to externally applied magnetic fields as **diamagnetic, paramagnetic, or ferromagnetic**. These magnetic responses differ greatly in strength.
 - Diamagnetism is a very weak form of magnetism that is NONpermanent and persist only while an external field is being applied.
 - Paramagnetism, when present, is stronger than diamagnetism and produces magnetization in the direction of the applied field, and proportional to the applied field.
 - Ferromagnetic materials possess a permanent magnetism moment in the absence of an external field, and manifest very large and permanent magnetizations. Ex. Cobalt, Nickel etc.

VIDEO - Paramagnetism & diamagnetism

6.0: Optical Properties

- Optical properties refer to a material's response to exposure to electromagnetic radiation, in particular to visible light.
- Basic principles involve the nature of electromagnetic radiation and its interactions with solid materials (light interactions; refraction, absorption etc.)
- Example: Colour, Opacity.

Physical Properties of Materials, in Descending Order

	Melting	Specific	Thermal	Thermal	Electrical
Density	point	heat	conductivity	expansion	conductivity
Platinum	Tungsten	Wood	Silver	Plastics	Silver
Gold	Tantalum	Beryllium	Copper	Lead	Copper
Tungsten	Molybdenum	Porcelain	Gold	Tin	Gold
Tantalum	Columbium	Aluminum	Aluminum	Magnesium	Aluminum
Lead	Titanium	Graphite	Magnesium	Aluminum	Magnesium
Silver	Iron	Glass	Graphite	Copper	Tungsten
Molybdenum	Beryllium	Titanium	Tungsten	Steel	Beryllium
Copper	Copper	Iron	Beryllium	Gold	Steel
Steel	Gold	Copper	Zinc	Ceramics	Tin
Titanium	Silver	Molybdenum	Steel	Glass	Graphite
Aluminum	Aluminum	Tungsten	Tantalum	Tungsten	Ceramics
Beryllium	Magnesium	Lead	Ceramics		Glass
Glass	Lead		Titanium		Plastics
Magnesium	Tin		Glass		Quartz
Plastics	Plastics		Plastics		

