For updated version, please click on http://ocw.ump.edu.my

HYDRAULICS

UNIFORM FLOW IN OPEN CHANNEL TOPIC 2.1

by

Nadiatul Adilah Ahmad Abdul Ghani Faculty of Civil Engineering and Earth Resources nadiatul@ump.edu.my

@090 Chapter 3: Iniform Flow in Open Chappel by N Adilah A A Chap

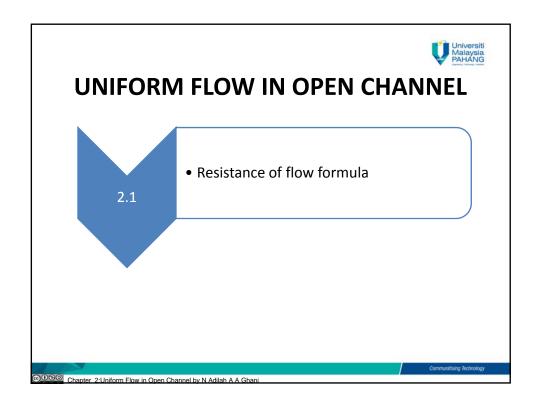
Communitising Technology

Chapter Description

Aims

Describe the hydraulic principles and apply the fundamental concept in analyzing flow in open channels.

Expected Outcomes


Able to define and analyse the uniform and non-uniform flow in open channel.

References

- 1. Chow, V.T, "Open Channel Hydraulics", McGraw Hill, Tokyo, 1959 (Web)
- 2. Mott, R. L., and Untener, J. A., "Applied Fluid Mechanics", 7th Ed., Prentice Hall, 2014
- Gribbin, John E., "Hydraulics and Hydrology for Stormwater Management", Delmar Publishers', 1997
- 4. Larock, Bruce E., "Hydraulics of Pipelines System", CRC Press,2000
- 5. Kay, M., "Practical Hydraulics", Taylor & Francis, 2008
- 6. Sturm T.W, "Open Channel Hydraulics", McGraw-Hill, 2000
- 7. Subramanya K., "Flow in open Channels", McGraw-Hill, 2008

Communitising Technology

Chapter 2:Uniform Flow in Open Channel by N Adilah A A Ghan

Definition

- The depth, flow area and velocity at every cross section are constant.
- The energy grade line, water surface and channel bottom are all parallel; that is,

$$Sf = Sw = So$$

where;

Sf = slope energy grade line Sw = slope of the water surface So = slope of the channel bed A 8

• In general, uniform flow can occur only in very long, straight and prismatic channel.

Chapter 2:Uniform Flow in Open Channel by N Adilah A A Ghani

2.1: RESISTANCE OF FLOW FORMULA

In open channel flow, resistance equations for uniform flow:

- a) Chezy formula
- b) Manning formula

Chapter 2: Uniform Flow in Open Chappel by N Adilah A A Ghar

2.1.1 Chezy Formula

This equation was developed by a French engineer, Antoine Chezy around the year 1768. The fundamental basis

$$V = C\sqrt{RS}$$

where;

V = average velocity

C = coefficient

R = hydraulic radius, (A/P)

S = slope of the energy grade line (dimensionless)

The value of \emph{C} , which is the Chezy resistance factor can be computed from the G.K. Formula and the Bazin Formula.

Chapter 2:Uniform Flow in Open Channel by N Adilah A A Ghan

a) Ganguillet Kutter Formula (Swiss, 1869)

$$C = \frac{41.65 + \frac{0.00281}{S} + \frac{1.811}{n}}{1 + \frac{n}{\sqrt{R}} \left[41.65 + \frac{0.00281}{S} \right]}$$
 Imperial Unit

$$C = \frac{23 + \frac{1}{n} + \frac{0.00155}{S}}{1 + \frac{n}{\sqrt{R}} \left[23 + \frac{0.00155}{S} \right]}$$
 SI Unit

Chapter 2:Uniform Flow in Open Channel by N Adilah A A Ghan

Communitisina Technology

b) Bazin Formula (France, 1897)

$$C = \frac{157.6}{1 + \frac{m}{\sqrt{R}}}$$
 Imperial Unit

$$C = \frac{87}{1 + \frac{m}{\sqrt{R}}}$$
 SI Unit

Chapter 2:Uniform Flow in Open Channel by N Adilah A A Ghani

Table 2.1 Value m for Bazin formula

Description of channel	Bazin's m
Very smooth cement of planed wood	0.11
Unplaned wood, concrete or brick	0.21
Ashlar, rubble masonry or poor brickwork	0.83
Earth channels in perfect condition	1.54
Earth channels in ordinary condition	2.36
Earth channels in rough condition	3.17

Source

0000

Chapter 2:Uniform Flow in Op

Communitising Technology

2.1.2 Manning Formula

This formula was later adapted to obtain a flow measurement. This is done by multiplying both sides by the area.

$$Q = \frac{1.49}{n} A R^{2/3} S_f^{1/2}$$
 Imperial Unit

$$Q = \frac{1}{n} A R^{2/3} S_f^{1/2}$$
 SI Unit

Manning's equation is the **most widely used** of all uniform-flow formulas for open channel flow, because of its simplicity and satisfactory results it produces in real-world applications.

Chapter 2:Uniform Flow in Open Channel by N Adilah A A Ghan

Table 2.2 Manning's Roughness coefficient, n

Material	Manning n	Material	Manning n
Natural Streams		Excavated Earth Channels	
Clean and Straight	0.030	Clean	0.022
Major Rivers	0.035	Gravelly	0.025
Sluggish with Deep Pools	0.040	Weedy	0.030
		Stony, Cobbles	0.035
Floodplains	0.035	Non-Metals	
Pasture, Farmland	0.050	Finished Concrete	0.012
Light Brush	0.075	Unfinished Concrete	0.014
Heavy Brush	0.15	Gravel	0.029
Trees		Earth	0.025

Source

Chapter 2:Uniform Flow in Open Channel by N Adilah A A Ghan

Factors Affecting Manning's Coefficient

- Surface Roughness
- Vegetation
- Channel Irregular
- Channel Alignment
- Silting and Scouring
- Obstruction
- Size and Shape of Channel
- Stage and Discharge
- Seasonal Change
- Suspended Material and Bed Load

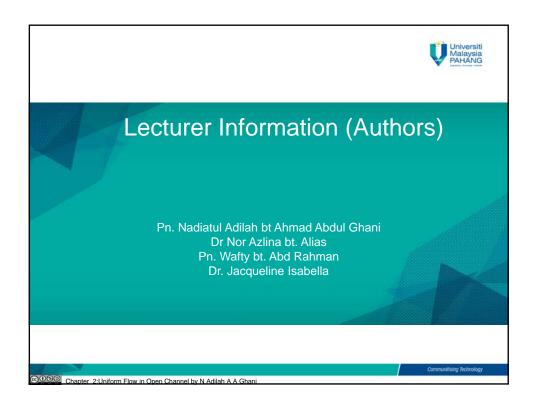
Chapter 2:Uniform Flow in Open Channel by N Adilah A A Ghan

EXAMPLE 2.1:

Water flows in a rectangular concrete open channel (n = 0.012) that is 12.0m wide at a depth of 2.5 m. The channel slope is 0.0028. Find the water velocity and flow rate using Manning's equation.

Chapter 2:Uniform Flow in Open Channel by N Adilah A A Ghani

Communitisina Technology



EXAMPLE 2.2:

A trapezoidal channel with 3 m width and bed slope 1 in 5000 is proposed to be built. The depth of flow is approximately 1.2m and the side slope is 1(V):2(H). Calculate the flow rate with these formulas:

- i. Manning (n=0.025)
- ii. Ganguilet-Kutter (n=0.025)
- iii. Bazin (m=1.3)

Chapter 2:Uniform Flow in Open Channel by N Adilah A A Ghani

