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Chapter Description

• Aims
– To determine the kinetic energy of a moving body.
– To introduce several types of work done by a moving body.
– To discuss on the Principle of Work and Energy.
– To explain on the Conservation of Energy.

• Expected Outcomes
– Students are able to calculate the kinetic energy and work done 

by external forces on a rigid body in motion.
– Students are able to determine utilise the Principle of Work and 

Energy and the Conservation of Energy to solve kinetic 
problems.

• References
– Engineering Mechanics: Dynamics 12th Edition, RC Hibbeler, 

Prentice Hall
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The kinetic energy of the entire body is determined by writing similar 
expressions for each particle of the body and integrating the results, i.e.,

T =
1
2 Lm

dm vi
2

This equation may also be expressed in terms of the velocity of point P. 
If the body has an angular velocity V, then from Fig. 18–1 we have

  vi = vP + vi>P
  = (vP)x i + (vP)y j + vk * (xi + yj)
  = [(vP)x - vy]i + [(vP)y + vx]j

The square of the magnitude of vi is thus

  vi
# vi = vi

2 = [(vP)x - vy]2 + [(vP)y + vx]2

  = (vP)x
2 - 2(vP)xvy + v2y2 + (vP)y

2 + 2(vP)yvx + v2x2

  = vP
2 - 2(vP)xvy + 2(vP)yvx + v2r2

Substituting this into the equation of kinetic energy yields
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Fig. 18–1 (repeated)

T =
1
2
aLm

dmbvP
2 - (vP)xvaLm

y dmb + (vP)yvaLm
x dmb + 1

2
 v2aLm

r2 dmb
The first integral on the right represents the entire mass m of the body. Since 
ym = 1y dm and xm = 1x dm, the second and third integrals locate the 
body’s center of mass G with respect to P. The last integral represents the 
body’s moment of inertia IP , computed about the z axis passing through 
point P. Thus,

 T = 1
2 mvP

2 - (vP)xvym + (vP)yvxm + 1
2 IPv

2 (18–1)

As a special case, if point P coincides with the mass center G of the 
body, then y = x = 0, and therefore

 T = 1
2 mvG

2 + 1
2 IGv

2 (18–2)

Both terms on the right side are always positive, since vG and v are 
squared. The first term represents the translational kinetic energy, 
referenced from the mass center, and the second term represents the 
body’s rotational kinetic energy about the mass center.
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Kinetic Energy

For ROTATION ABOUT A FIXED AXIS

about Point O

IO can be calculated using 
the parallel axis theorem
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Kinetic Energy

For GENERAL PLANE MOTION

Or, if the location of IC can be identified

IIC can be calculated using 
the parallel axis theorem

KINETIC ENERGY IS 
ALWAYS POSITIVE !
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Work, Uà U is the symbol for work
A body will do work when it undergoes displacement in the 
direction of the force

① The work of a force

a) Variable force b) Constant force
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Work, Uà U is the symbol for work
A body will do work when it undergoes displacement in the 
direction of the force

② The work of weight

If this displacement is upward, the work is
negative, since the weight is opposite to
the displacement. If the displacement is
downward (-y) the work becomes positive.



Work, Uà U is the symbol for work
A body will do work when it undergoes displacement in the 
direction of the force

In both cases (compressed
or stretched), the work of a
spring is NEGATIVE since
the displacement of the
body is in the opposite
direction of the force.

③ The work of a spring



Forces that do NO WORK!

• Forces that act on a fixed point on a body
• eg. Reaction at pin support about which the body 

rotates.

• Forces that have direction perpendicular to 
the displacement

• Normal reactions acting on a body that moves 
along a fixed surface

• Weight when the centre of gravity of the body 
moves in horizontal plane

• Friction force acting on a body when it rolls without 
slipping

Since this point is IC, the work 
done is ZERO



The work of a Couple Moment

If the couple moment M has constant magnitude,

The angle 𝜃
is in radian



Principle of Work and Energy

This equation states that the body’s initial
translational and rotational kinetic energy,
plus the work done by all the external forces
and couple moments acting on the body as the
body moves from its initial to its final position, is
equal to the body’s final translational and
rotational kinetic energy.



Conservative Force
• A conservative force is a force with the property that the work done in

moving a particle between two points is independent of the taken path.

• When a force system acting on a rigid body consists only of

conservative forces, the conservation of energy theorem can be used

to solve a problem.

• Easier to apply – the work of a conservative force is independent of the

path and depends only on the initial and final positions of the body.



Gravitational Potential Energy
The gravitational potential energy of the
body is determined by knowing the height
of the body’s centre of gravity above or
below a horizontal datum.



Elastic Potential Energy
The force developed by an elastic spring is also a conservative
force. The elastic potential energy which a spring imparts to an
attached body when the spring is stretched or compressed from an
initial undeformed position (s = 0) to a final position s, is



Conservation of Energy
If a body is subjected to both gravitational and elastic
forces, the total potential energy can be expressed as
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Conservation of Energy In general, if a body is subjected to
both gravitational and elastic forces, the total potential energy can be
expressed as a potential function represented as the algebraic sum

(18–17)

Here measurement of V depends upon the location of the body with
respect to the selected datum.

Realizing that the work of conservative forces can be written as a
difference in their potential energies, i.e.,
Eq. 14–16, we can rewrite the principle of work and energy for a rigid
body as

(18–18)

Here represents the work of the nonconservative forces
such as friction. If this term is zero, then

(18–19)

This equation is referred to as the conservation of mechanical energy. It
states that the sum of the potential and kinetic energies of the body
remains constant when the body moves from one position to another. It
also applies to a system of smooth, pin-connected rigid bodies, bodies
connected by inextensible cords, and bodies in mesh with other bodies.
In all these cases the forces acting at the points of contact are eliminated
from the analysis, since they occur in equal but opposite collinear pairs
and each pair of forces moves through an equal distance when the
system undergoes a displacement.

It is important to remember that only problems involving conservative
force systems can be solved by using Eq. 18–19. As stated in Sec. 14.5,
friction or other drag-resistant forces, which depend on velocity or
acceleration, are nonconservative. The work of such forces is
transformed into thermal energy used to heat up the surfaces of contact,
and consequently this energy is dissipated into the surroundings and may
not be recovered. Therefore, problems involving frictional forces can be
solved by using either the principle of work and energy written in the
form of Eq. 18–18, if it applies, or the equations of motion.

T1 + V1 = T2 + V2

1©U1–22noncons

T1 + V1 + 1©U1-22noncons = T2 + V2

1©U1–22cons = V1 - V2 ,

V = Vg + Ve

The torsional springs located at the top
of the garage door wind up as the door
is lowered. When the door is raised, the
potential energy stored in the springs is
then transferred into gravitational
potential energy of the door’s weight,
thereby making it easy to open.
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à Total work done by the conservative forces

à Principle of Work and Energy

Rearranging the principle of work and energy,

If the total work done by non-conservative forces is ZERO, then

Conservation of Mechanical Energy



“If I have ever made any valuable discoveries, it has 
been owing more to patient attention, than to any 
other talent.”

– Sir Isaac Newton
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