DYNAMICS

Planar Kinetics of a Rigid Body (Work and Energy)

by:

Dr. Mohd Hasnun Arif HASSAN

Faculty of Manufacturing Engineering mhasnun@ump.edu.my

Chapter Description

- Aims
- To determine the kinetic energy of a moving body.
- To introduce several types of work done by a moving body.
- To discuss on the Principle of Work and Energy.
- To explain on the Conservation of Energy.
- Expected Outcomes
- Students are able to calculate the kinetic energy and work done by external forces on a rigid body in motion.
- Students are able to determine utilise the Principle of Work and Energy and the Conservation of Energy to solve kinetic problems.
- References
- Engineering Mechanics: Dynamics $12^{\text {th }}$ Edition, RC Hibbeler, Prentice Hall

Contents

- Kinetic Energy
- The Work Done
- Principle of Work and Energy
- Conservation of Energy

Planar Kinetics of Rigid Body

Force \&
Acceleration
$F=m a$

Kinetic Energy, T

> Work, U

Principle of Work \& Energy

Conservation of Energy

Kinetic Energy

If only TRANSLATION occur

Kinetic Energy

For ROTATION ABOUT A FIXED AXIS

$$
T=\frac{1}{2} m v_{G}^{2}+\frac{1}{2} I_{G} \omega^{2}
$$

about Point O

$$
T=\frac{1}{2} I_{O} \omega^{2} \quad \begin{aligned}
& I_{O} \text { can be calculated using } \\
& \text { the parallel axis theorem }
\end{aligned}
$$

Rotation about a fixed axis

Kinetic Energy

KINETIC ENERGYIS ALWAYS POSITIVE!

For GENERAL PLANE MOTION

$$
T=\underbrace{\frac{1}{2} m v_{G}^{2}}_{\text {Translational KE }}+\underbrace{\frac{1}{2} I_{G} \omega^{2}}_{\text {Rotational KE }}
$$

$$
T=\frac{1}{2} m v_{G}^{2}+\frac{1}{2} I_{G} \omega^{2}
$$

Or, if the location of $I C$ can be identified

$$
T=\frac{1}{2} I_{I C} \omega^{2} \quad \begin{aligned}
& l_{\text {IC }} \text { can be calculated using } \\
& \text { the parallel axis theorem }
\end{aligned}
$$

General Plane Motion

Work, $\boldsymbol{U} \rightarrow \boldsymbol{U}$ is the symbol for work

A body will do work when it undergoes displacement in the direction of the force
(1) The work of a force
a) Variable force
b) Constant force

$$
U_{F_{c}}=\left(F_{c} \cos \theta\right) s
$$

$$
U_{F}=\int \mathbf{F} \cdot d \mathbf{r}=\int_{s} F \cos \theta d s
$$

Work, $\boldsymbol{U} \rightarrow \boldsymbol{U}$ is the symbol for work

A body will do work when it undergoes displacement in the direction of the force
(2) The work of weight

Work, $\boldsymbol{U} \rightarrow \boldsymbol{U}$ is the symbol for work

A body will do work when it undergoes displacement in the direction of the force
(3) The work of a spring

$$
U_{s}=-\left(\frac{1}{2} k s_{2}^{2}-\frac{1}{2} k s_{1}^{2}\right)
$$

Forces that do NO WORK!

- Forces that act on a fixed point on a body
- eg. Reaction at pin support about which the body rotates.
- Forces that have direction perpendicular to the displacement
- Normal reactions acting on a body that moves along a fixed surface
- Weight when the centre of gravity of the body moves in horizontal plane
- Friction force acting on a body when it rolls without slipping

Since this point is IC, the work done is ZERO

The work of a Couple Moment

$$
U_{M}=\int_{\theta_{1}}^{\theta_{2}} M d \theta
$$

If the couple moment \mathbf{M} has constant magnitude,

$$
U_{M}=M\left(\theta_{2}-\theta_{1}\right)
$$

The angle θ is in radian

Principle of Work and Energy

$$
T_{1}+\Sigma U_{1-2}=T_{2}
$$

This equation states that the body's initial translational and rotational kinetic energy, plus the work done by all the external forces and couple moments acting on the body as the body moves from its initial to its final position, is equal to the body's final translational and rotational kinetic energy.

Conservative Force

- A conservative force is a force with the property that the work done in moving a particle between two points is independent of the taken path.

- When a force system acting on a rigid body consists only of conservative forces, the conservation of energy theorem can be used to solve a problem.
- Easier to apply - the work of a conservative force is independent of the path and depends only on the initial and final positions of the body.

Gravitational Potential Energy

The gravitational potential energy of the body is determined by knowing the height of the body's centre of gravity above or below a horizontal datum.

$$
V_{g}=W y_{G}
$$

Elastic Potential Energy

The force developed by an elastic spring is also a conservative force. The elastic potential energy which a spring imparts to an attached body when the spring is stretched or compressed from an initial undeformed position $(s=0)$ to a final position s, is

$$
V_{e}=+\frac{1}{2} k s^{2}
$$

Conservation of Energy

If a body is subjected to both gravitational and elastic forces, the total potential energy can be expressed as

$$
V=V_{g}+V_{e}
$$

$$
T_{1}+\sum U_{1-2}=T_{2} \quad \rightarrow \text { Principle of Work and Energy }
$$

$\left(\Sigma U_{1-2}\right)_{\text {cons }}=V_{1}-V_{2} \rightarrow$ Total work done by the conservative forces

Rearranging the principle of work and energy,
$T_{1}+V_{1}+\left(\Sigma U_{1-2}\right)_{\text {noncons }}=T_{2}+V_{2}$

If the total work done by non-conservative forces is ZERO, then

$$
T_{1}+V_{1}=T_{2}+V_{2}
$$

Conservation of Mechanical Energy

Planar Kinetics of a Rigid Body (Work and Energy)

"If I have ever made any valuable discoveries, it has been owing more to patient attention, than to any other talent."

- Sir Isaac Newton

