

DYNAMICS

Planar Kinetics of a Rigid Body (General Plane Motion)

by: Dr. Mohd Hasnun Arif HASSAN Faculty of Manufacturing Engineering mhasnun@ump.edu.my

General Plane Motion

• Aims

 To discuss the force and acceleration method of a rigid body undergoing general plane motion.

- Expected Outcomes
 - Students are able to determine the forces and moments, acceleration and angular acceleration of a rigid body undergoing general plane motion.
- References
 - Engineering Mechanics: Dynamics 12th Edition, RC Hibbeler, Prentice Hall

Contents

- General Equation of Motion
- Frictional Rolling Problem

General Equation of Motion

Communitising Technology

General Equation of Motion

$$\sum F_x = m(a_G)_x$$

$$\sum F_y = m(a_G)_y$$

$$\sum M_G = \sum M_{F,G} + \sum M = I_G \alpha$$

About Centre of Gravity G

Communitising Technology

General Equation of Motion

About the IC

Frictional Rolling Problems

Involving e.g., wheels, disks, cylinders, or balls often require an extra equation due to the presence of the 'extra unknown' representing the frictional force.

No slipping

 $a_G = r\alpha$

Slipping occur $F = \mu_k N$

Planar Kinetics of a Rigid Body (General Plane Motion)

"I can calculate the motion of heavenly bodies, but not the madness of people."

- Sir Isaac Newton

blog.ump.edu.my/mhasnun

