DYNAMICS

Planar Kinetics of a Rigid Body (Rotation About a Fixed Axis)

by:

Dr. Mohd Hasnun Arif HASSAN

Faculty of Manufacturing Engineering mhasnun@ump.edu.my

Planar Kinetics - Rotation about a fixed axis

- Aims
- To discuss the force and acceleration method of a rigid body undergoing rotation about a fixed axis.
- Expected Outcomes
- Students are able to determine the forces and moments, acceleration and angular acceleration of a rigid body undergoing rotation about a fixed axis.
- References
- Engineering Mechanics: Dynamics $12^{\text {th }}$ Edition, RC Hibbeler, Prentice Hall

Contents

- Rotation about a fixed axis about mass centre G
- Rotation about a fixed axis about Point O
- Example calculation

Rotation about a fixed axis

$$
\left.\begin{array}{l}
\sum F_{n}=m\left(a_{G}\right)_{n} \\
\sum F_{t}=m\left(a_{G}\right)_{t}
\end{array}\right] \begin{aligned}
& a_{n}=\omega^{2} r \\
& a_{t}=\alpha r
\end{aligned}
$$

$$
\sum M_{P}=\sum\left(\mathscr{M}_{k}\right)_{P}
$$

$$
\begin{aligned}
& \sum F_{n}=m \omega^{2} r_{G} \\
& \sum F_{t}=\alpha r_{G} \\
& \sum M_{P}=\sum\left(\mathscr{M}_{k}\right)_{P}
\end{aligned}
$$

Rotation about a fixed axis

$$
\begin{aligned}
& \sum F_{n}=m \omega^{2} r_{G} \\
& \sum F_{t}=\alpha r_{G} \\
& \sum M_{P}=\sum\left(\mathscr{M}_{k}\right)_{P} .
\end{aligned}
$$

$$
\begin{aligned}
\sum\left(\mathscr{M}_{k}\right)_{P} & =m\left(a_{G}\right)_{n} \cdot d_{t} \\
& -m\left(a_{G}\right)_{t} \cdot d_{n} \\
& +I_{G} \alpha
\end{aligned}
$$

Rotation about a fixed axis

About Centre of Gravity G

Rotation about a fixed axis

Moment of $F_{\mathrm{n}}=0$

$$
m\left(a_{G}\right)_{n} r_{O}
$$

$\sum F_{n}=m \omega^{2} r_{G}$
$\sum_{t} F_{t}=\operatorname{mar} r_{G}$
$\sum M_{G}=\sum\left(\mathcal{M}_{k}\right)_{0}$

$$
I=I_{G}+m d^{2}
$$

About Point O

Example Calculation

A $50-\mathrm{kg}$ object with radius of gyration, $k_{\mathrm{G}}=0.4 \mathrm{~m}$, about its centre of gravity G is pinned at point O and is subjected to the couple moment as shown. If at this instant it has angular velocity of $6 \mathrm{rad} / \mathrm{s}$, determine the support reaction at point O and its angular acceleration.

Example \#1 (Moment about Point O)

free-body diagram

Photos by Yiheng Wang / CC BY
kinetic diagram

$$
\begin{aligned}
& \sum F_{n}=O_{n}+491 \sin 80^{\circ}=m \omega^{2} r_{G} \quad \therefore O_{n}=597(\mathrm{~N}) \\
& \sum F_{t}=O_{t}-491 \cos 80^{\circ}=m \alpha r_{G}=30 \alpha \quad \therefore \quad O_{t}=142 \mathrm{~N} \\
& \sum M_{O}=100-491 \cos 80^{\circ} \cdot 0.6=I_{O} \alpha=\left(I_{G}+m r_{G}^{2}\right) \alpha \\
& =\left(m k_{G}^{2}+m r_{G}^{2}\right) \alpha=50\left(0.4^{2}+0.6^{2}\right) \alpha=26 \alpha \quad \therefore \alpha=1.88 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

Example \#1 (Moment about Point G)

free-body diagram

Photos by Yiheng Wang / CC BY
kinetic diagram

Alternatively:

$$
\begin{aligned}
& \sum M_{G}=-O_{t} \cdot 0.6+100=I_{G} \alpha=50 \cdot 0.4^{2} \alpha \\
& \sum F_{t}=O_{t}-491 \cos 80^{\circ}=m \alpha r_{G}=30 \alpha
\end{aligned} \quad \therefore\left\{\begin{array}{l}
\alpha=1.88 \mathrm{rad} / \mathrm{s}^{2} \\
O_{t}=142 \mathrm{~N}
\end{array}\right.
$$

Planar Kinetics of a Rigid Body (Rotation About a Fixed Axis)

"Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things."

- Sir Isaac Newton

