DYNAMICS

Planar Kinematics of a Rigid Body (Relative Motion using Rotating Axes)

by:

Dr. Mohd Hasnun Arif HASSAN

Faculty of Manufacturing Engineering
mhasnun@ump.edu.my

Relative Motion using Rotating Axes

- Aims
- To revise on the relative motion with translating axis.
- To introduce the relative motion using rotating axes.
- Expected Outcomes
- Students are able to distinguish between the case of translating and rotating axes.
- Students are able to determine velocity and acceleration in the case of relative motion using rotating axes.
- References
- Engineering Mechanics: Dynamics 12 ${ }^{\text {th }}$ Edition, RC Hibbeler, Prentice Hall

Contents

- Relative Motion with Translating Frame
- Relative Motion using Rotating Axes
- Example Calculation

Recall: Relative motion with translating frame

Translating reference frame

\vec{r}_{A} and \vec{r}_{B} are absolute positions. $\vec{r}_{B / A}$ are the relative position of B relative to A.

$$
\vec{r}_{B / A}=\vec{r}_{B}-\vec{r}_{A}
$$

Fixed reference frame

Recall: Relative motion with translating frame

Recall: Relative motion with translating frame

Relative Motion - Rotating Axes

Relative Motion - Rotating Axes

Relative Motion - Rotating Axes

Relative position:

Fixed reference frame
$\vec{r}_{B / A}=\vec{r}_{B}-\vec{r}_{A}$
Relative velocity:
$\vec{v}_{B / A}=\vec{v}_{B}-\vec{v}_{A}$
Relative acceleration:
$\vec{a}_{B / A}=\vec{a}_{B}-\vec{a}_{A}$
Remember: For translating axes, the unit vector $\hat{\imath}, \hat{\jmath}, \hat{k}$ do not change with time.

$$
\begin{aligned}
\vec{r}_{B / A} & =x \hat{i}+y \hat{j}+z \hat{k} \\
\vec{v}_{B / A} & =\frac{d \vec{r}_{B / A}}{d t}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}
\end{aligned}
$$

Only x, y and z are functions of time. $\hat{\imath}, \hat{\jmath}, \hat{k}$ are not functions of time.

Relative Motion - Rotating Axes

Rotating reference frame (maybe translating too)

Relative Motion - Rotating Axes

$$
\begin{aligned}
\vec{r}_{B / A} & =\vec{r}_{B}-\vec{r}_{A} \\
\frac{d \vec{r}_{B / A}}{d t} & =\vec{v}_{B}-\vec{v}_{A} \\
\vec{r}_{B / A} & =x \hat{i}+y \hat{j}
\end{aligned}
$$

$\hat{\imath}$ and $\hat{\jmath}$ are now variables.
To integrate $\vec{r}_{B / A}$, chain rule need to be used.

$$
\begin{aligned}
& d(u v)=d u v+u d v \\
& \frac{d \vec{r}_{B / A}}{d t}=\frac{d x}{d t} \hat{i}+x \frac{d \hat{i}}{d t}+\frac{d y}{d t} \hat{j}+y \frac{d \hat{j}}{d t}
\end{aligned}
$$

Relative Motion - Rotating Axes

$$
\begin{aligned}
\vec{r}_{B / A} & =\vec{r}_{B}-\vec{r}_{A} \\
\frac{d \vec{r}_{B / A}}{d t} & =\vec{v}_{B}-\vec{v}_{A} \\
\vec{r}_{B / A} & =x \hat{i}+y \hat{j}
\end{aligned}
$$

$$
\frac{d \vec{r}_{B / A}}{d t}=\frac{d x}{d t} \hat{i}+x \frac{d \hat{i}}{d t}+\frac{d y}{d t} \hat{j}+y \frac{d \hat{j}}{d t}
$$

rearrange:

$$
\frac{d \vec{r}_{B / A}}{d t}=\underbrace{\frac{d x}{d t} \hat{i}+\frac{d y}{d t}} \hat{j}+\underbrace{x \frac{d \hat{i}}{d t}+y \frac{d \hat{j}}{d t}}
$$

Velocity of Point B as observed at Point A in $x y$ frame $\left(\vec{v}_{B / A}\right)_{x y}$

From $s=r \theta$, assuming \hat{i} and $\hat{j}=1$

$$
\begin{aligned}
d \hat{i} & =(1 \cdot d \theta) \hat{j} \\
\frac{d \hat{i}}{d t} & =\frac{d \theta}{d t} \hat{j} \quad \text { where } \frac{d \theta}{d t}=\Omega
\end{aligned}
$$

$$
\therefore \frac{d \hat{i}}{d t}=\vec{\Omega} \times \hat{i}
$$

Relative Motion - Rotating Axes

$$
\frac{d \vec{r}_{B / A}}{d t}=\vec{v}_{B}-\vec{v}_{A}
$$

$$
\begin{array}{r}
\frac{d \vec{r}_{B / A}}{d t}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\underbrace{x \frac{d \hat{i}}{d t}+y \frac{d \hat{j}}{d t}} \\
x(\vec{\Omega} \times \hat{i})+y(\vec{\Omega} \times \hat{j}) \\
\vec{\Omega} \times(x \hat{i}+y \hat{j})=\vec{\Omega} \times \vec{r}_{B / A}
\end{array}
$$

From $s=r \theta$, assuming \hat{i} and $\hat{j}=1$

$$
\begin{aligned}
& d \hat{i}=(1 \cdot d \theta) \hat{j} \\
& \frac{d \hat{i}}{d t}=\frac{d \theta}{d t} \hat{j} \quad \text { where } \frac{d \theta}{d t}=\Omega \\
& \therefore \frac{d \hat{i}}{d t}=\vec{\Omega} \times \hat{i} \quad \frac{d \hat{j}}{d t}=\frac{d \theta}{d t}(-\hat{i})=\vec{\Omega} \times \hat{j}
\end{aligned}
$$

$$
\vec{v}_{B}=\vec{v}_{A}+\vec{\Omega} \times \vec{r}_{B / A}+\left(\vec{v}_{B / A}\right)_{x y}
$$

Relative Motion - Rotating Axes

$$
\vec{v}_{B}=\vec{v}_{A}+\vec{\Omega} \times \vec{r}_{B / A}+\left(\vec{v}_{B / A}\right)_{x y}
$$

Differentiate to get the equation for acceleration

$$
\vec{a}_{B}=\vec{a}_{A}+\frac{d \vec{\Omega}}{d t} \times \vec{r}_{B / A}+\vec{\Omega} \times \frac{d \vec{r}_{B / A}}{d t}+\frac{\left.d \vec{v}_{B / A}\right)_{x y}}{d t}
$$

$$
\begin{aligned}
\frac{d \vec{r}_{B / A}}{d t} & =\vec{\Omega} \times \vec{r}_{B / A}+\left(\vec{v}_{B / A}\right)_{x y} \\
\frac{d \vec{v}_{B / A}}{d t} & =\vec{\Omega} \times\left(\vec{v}_{B / A}\right)_{x y}+\left(\vec{a}_{B / A}\right)_{x y} \\
\vec{a}_{B} & =\vec{a}_{A}+\dot{\Omega} \times \vec{r}_{B / A}+\vec{\Omega} \times\left(\vec{\Omega} \times \vec{r}_{B / A}+\left(\vec{v}_{B / A}\right)_{x y}\right)+\vec{\Omega} \times\left(\vec{v}_{B / A}\right)_{x y}+\left(\vec{a}_{B / A}\right)_{x y} \\
\vec{a}_{B} & =\vec{a}_{A}+\dot{\Omega} \times \vec{r}_{B / A}+\vec{\Omega} \times\left(\vec{\Omega} \times \vec{r}_{B / A}\right)+2 \vec{\Omega} \times\left(\vec{v}_{B / A}\right)_{x y}+\left(\vec{a}_{B / A}\right)_{x y} \\
\vec{a}_{B} & =\vec{a}_{A}+\overrightarrow{\dot{\Omega}} \times \vec{r}_{B / A}-\Omega^{2} \vec{r}_{B / A}+2 \vec{\Omega} \times\left(\vec{v}_{B / A}\right)_{x y}+\left(\vec{a}_{B / A}\right)_{x y}
\end{aligned}
$$

Example Calculation

The horizontal surface rotates with the angular velocity and

Example Calculation

Example Calculation

Absolute velocity of the toy duck $=\vec{v}_{B}$

$$
\begin{array}{rl}
\vec{v}_{B} & =\vec{v}_{A}+\vec{\Omega} \times \vec{r}_{B / A}+\left(\vec{v}_{B / A}\right)_{x y} \\
0 & 0.4 \hat{k} \\
\vec{v}_{B} & =0.4 \hat{k} \times 1 \hat{i}+0.2 \hat{i} \\
& =0.4 \hat{j}+0.2 \hat{i} \\
\vec{v}_{B} & =0.2 \hat{i}+0.4 \hat{j} \mathrm{~m} / \mathrm{s}
\end{array}
$$

Example Calculation

Absolute velocity of Point B on the xy frame.

Motion of $x y$
frame observed from the $X Y$ frame

Relative velocity of Point B wrt Point A

Motion of Point B observed from the xy frame

Example Calculation

$$
\begin{aligned}
& \vec{a}_{B}=\vec{a}_{A}+\vec{\Omega} \times \vec{r}_{B / A}-\Omega^{2} \vec{r}_{B / A}+2 \vec{\Omega} \times\left(\vec{v}_{B / A}\right)_{x y}+\underbrace{\left(\vec{a}_{B / A}\right)_{x y}}) \\
& \text { Absolute acceleration of }
\end{aligned}
$$

Point B on the $x y$ frame.

Motion of $x y$ frame observed from the $X Y$

Coriolis acceleration

Relative acceleration of Point B wrt Point A

Motion of Point B observed from the xy frame

An important mathematical correction factor that must be included when using rotating reference frame.

Named after a French engineer, G.C. Coriolis who was the first to determine it.

Conclusions

- Relative motion analysis using rotating axes is used to solve problems involving:
- connected members that slide relative to one another, or
- points that are not located on the same body.
- In this case, there is a new term called the Coriolis acceleration, which is given by $2 \vec{\Omega} \times\left(\vec{v}_{B / A}\right)_{x y}$.

Planar Kinematics of a Rigid Body (Relative Motion using Rotating Axes)

"A man may imagine things that are false, but he can only understand things that are true."

- Sir Isaac Newton

