DYNAMICS

Planar Kinematics of a Rigid Body (Relative Motion Analysis)

by:

Dr. Mohd Hasnun Arif HASSAN

Faculty of Manufacturing Engineering
mhasnun@ump.edu.my

Relative Motion Analysis

- Aims
- To determine the velocity of a point on a rigid body
- To determine the acceleration of a point on a rigid body
- Expected Outcomes
- The students are able to calculate the velocity of a point on a rigid body.
- The students are able to calculate the acceleration of a point on a rigid body.
- References
- Engineering Mechanics: Dynamics $12^{\text {th }}$ Edition, RC Hibbeler, Prentice Hall

Contents

- General Plane Motion
- Relative Motion Analysis
- Relative Motion Analysis: Velocity
- Relative Motion Analysis: Acceleration
- Conclusion

General Plane Motion

Relative Motion Analysis

REMEMBER!

- Counter-clockwise rotation is POSITIVE
- Clockwise rotation is NEGATIVE

2) Rotation about a fixed axis (Point A)
The displacement of all PARTICLES in a rigid body during TRANSLATION is the SAME.

Relative Motion Analysis: Velocity

Linear velocities of any TWO arbitrary PARTICLES on a rigid body undergoing General Plane Motion
$d \vec{r}_{B}=d \vec{r}_{A}+d \vec{r}_{B / A}$

$$
\frac{d \vec{r}_{B}}{d t}=\frac{d \vec{r}_{A}}{d t}+\frac{d \vec{r}_{B / A}}{d t}
$$

Relative Motion Analysis: Velocity

$$
\begin{gathered}
\vec{v}_{B}=\vec{v}_{A}+\vec{v}_{B / A} \\
\vec{v}_{B / A}=\vec{\omega} \times \vec{r}_{B / A}
\end{gathered}
$$

$$
\vec{v}_{B}=\vec{v}_{A}+\vec{\omega} \times \vec{r}_{B / A}
$$

Relative Motion Analysis: Acceleration

$d \vec{r}_{B}=d \vec{r}_{A}+d \vec{r}_{B / A}$
$\frac{d^{2} \vec{r}_{B}}{d t^{2}}=\frac{d^{2} \vec{r}_{A}}{d t^{2}}+\frac{d^{2} \vec{r}_{B / A}}{d t^{2}}$

$$
\vec{a}_{B}=\left({\underset{\text { translation }}{ })}_{\vec{a}_{\text {rotation }}}^{\vec{a}_{B / A}}\right.
$$

Relative Motion Analysis: Acceleration

$$
\begin{aligned}
& \vec{a}_{B}=\vec{a}_{A}+\vec{a}_{B / A} \\
& \vec{a}_{B / A}=\underbrace{\alpha} \times \vec{r}_{B / A}-\vec{a}^{2} \vec{r}_{B / A}=\vec{a}_{A}+\vec{\alpha} \times \vec{r}_{B / A}-\omega^{2} \vec{r}_{B / A} \\
& \text { tangential acceleration normal acceleration }
\end{aligned}
$$

Relative Motion Analysis: Acceleration

The position vector is always drawn FROM the Reference Point

Relative Motion Analysis: Acceleration

To determine the velocity and accelaration of Point A, set Point B as the reference point.

$$
\begin{gathered}
\vec{v}_{A}=\vec{v}_{B}+\vec{\omega}_{A B} \times \vec{r}_{A / B} \\
=\vec{v}_{C}+\vec{\omega}_{A C} \times \vec{r}_{A / C}
\end{gathered}
$$

$$
\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha}_{A B} \times \vec{r}_{A / B}-\omega_{A B}^{2} \vec{r}_{A / B}
$$

$$
=\vec{a}_{C}+\vec{\alpha}_{A C} \times \vec{r}_{A / C}-\omega_{A C}^{2} \vec{r}_{A / C}
$$

In the case of joints, Point \boldsymbol{A} not only belongs to the Rigid Body $A B$ but also to the Rigid Body AC

Conclusions

- General plane motion is the combination of translation and rotation.
- Counter-clockwise rotation is always taken as positive.
- Relative velocity and acceleration of a point on a rigid body undergoing general plane motion comprise of translation term and rotation term.

Planar Kinematics of a Rigid Body (Relative Motion Analysis)

"What we know is a drop, what we don't know is an ocean."

- Sir Isaac Newton

