DYNAMICS

Planar Kinematics of a Rigid Body (Translation and Rotation)

by:

Dr. Mohd Hasnun Arif HASSAN

Faculty of Manufacturing Engineering
mhasnun@ump.edu.my

Translation and Rotation

- Aims
- To revise on the position vector.
- To introduce about the types of planar motion of rigid body.
- To discuss about translation and rotation about a fixed axis.
- To analyse the motion of a particular point on a rigid body.
- Expected Outcomes
- Students are able to determine the position vector of a point on a rigid body.
- Students are able to distinguish different types of planar motion of a rigid body.
- Students are able to calculate the velocity and acceleration of a particular point on a rigid body.
- References
- Engineering Mechanics: Dynamics 12 ${ }^{\text {th }}$ Edition, RC Hibbeler, Prentice Hall

Content

- Introduction
- Position Vector
- Planar Motion of a Rigid Body
- Translation
- Rotation about a Fixed Axis
- Conclusions

Introduction

Engineering Mechanics

Planar Kinematics - Rotation about a fixed axis

Planar Kinematics - General plane motion

Planar Kinetics - Work and Energy

Planar Kinetics - Impulse and Momentum

Position Vector

Position vector is a vector that represents a directed line between two points. Graphically, it is an arrow with head and tail. For example, referring to the mechanism below we represent the position vector $\vec{r}_{B / A}$ as:
$\vec{r}_{B / A}=0.3 \hat{\imath}+0.4 \hat{\jmath} \mathrm{~m}$

The $\hat{\imath}$ and $\hat{\jmath}$ are the unit vectors along the x and y axis respectively. We read the above equation like the following:

The position vector of point B relative to point A is 0.3 m to the positive x-axis plus 0.4 meter to the positive y-axis.

Position Vector

Notice the difference between $\vec{r}_{A / B}$ with $\vec{r}_{B / A}$. It is opposite to each other. Therefore $\vec{r}_{A / B}$ is:

$$
\vec{r}_{A / B}=-0.3 \hat{\imath}-0.4 \hat{\jmath}
$$

Always remember which one is the head and which one is the tail.
Head
\vec{r}_{B}
B/A
Sometimes, we use the angle of the vector and the distance between the points in order to determine the x and y components of the vector.
Tail

$$
\vec{r}_{B / A B}=l_{A B} \cos \theta_{1} \hat{\imath}+l_{A B} \sin \theta_{1} \hat{\jmath}
$$

In this practice, you must identify the position vectors on a mechanism. We must know the position vector in order to determine the velocity and acceleration of moving rigid bodies.

Planar Motion of a Rigid Body

Translation

The path of 2 points remains parallel

Rotation about a fixed axis

The body rotates about a fixed axis, all points on the body except for those on the line of rotation moves along a circular path.

General plane motion

Combination of translation and rotation

Translation

Rotation about a fixed axis

The path of motion of any point (particle) on the rigid body is ALWAYS CIRCULAR

For rigid body planar motion, rotation is limited to the x - y plane.

The rigid body is actually rotating about z-axis that passes through Point O.

That is why this motion is called rotation about a fixed axis.

Rotation about a fixed axis

Rotation about a fixed axis

Linear motion Angular motion

$$
\begin{aligned}
v & =\frac{d s}{d t} & \omega & =\frac{d \theta}{d t} \\
a & =\frac{d v}{d t} & \alpha & =\frac{d \omega}{d t} \\
a d s & =v d v & \alpha d \theta & =\omega d \omega
\end{aligned}
$$

$$
\frac{d \theta}{d t}=\omega \rightarrow \text { angular velocity [rad/s] }
$$

$$
\alpha d \theta=\omega d \omega
$$

$\theta \rightarrow$ angular position [rad]

$$
\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}=\alpha \rightarrow \text { angular acceleration }\left[\mathrm{rad} / \mathrm{s}^{2}\right]
$$

Rotation about a fixed axis

Linear motion Angular motion

$$
\begin{aligned}
v & =\frac{d s}{d t} & \omega & =\frac{d \theta}{d t} \\
a & =\frac{d v}{d t} & \alpha & =\frac{d \omega}{d t} \\
a d s & =v d v & \alpha d \theta & =\omega d \omega
\end{aligned}
$$

Motion with constant acceleration

Linear motion

$$
\begin{aligned}
& s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
& v=v_{0}+a_{c} t
\end{aligned}
$$

$$
v^{2}=v_{0}^{2}+2 a_{c}\left(s-s_{0}\right)
$$

Angular motion

$$
\begin{array}{r}
\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha_{c} t^{2} \\
\omega=\omega_{0}+\alpha_{c} t \\
\omega^{2}=\omega_{0}^{2}+2 \alpha_{c}\left(\theta-\theta_{0}\right)
\end{array}
$$

Rotation about a fixed axis

Counter-clockwise rotation $=+$ ve

$$
\begin{aligned}
\vec{\theta} & =\theta \hat{k} \\
\vec{\omega} & =\omega \hat{k} \\
\vec{\alpha} & =\alpha \hat{k}
\end{aligned}
$$

A particle can NEVER ROTATE.

In rigid body rotation, all particles undergo curvilinear motion.

The rigid body has angular velocity and angular acceleration,
but the particles (points) have linear velocity and linear acceleration.

Curvilinear motion of Point P

The direction of \vec{v} is ALWAYS TANGENT to the path

$$
\vec{v}=\frac{\Delta \vec{r}}{\Delta t}
$$

If $\Delta t \rightarrow 0$,
\vec{r} and \vec{r}^{\prime} almost fall on the same line.
$d \vec{r}$ is perpendicular to \vec{r},
$\rightarrow \mathrm{d} \vec{r}$ is tangent to the path.
\therefore the direction of instantaneous velocity \vec{v} is always tangent to the curved path.

Curvilinear motion of Point P

RECALL: tangential and normal component

t : tangential axis - tangent to the path
n : normal axis - point towards the centre of the arc

Unit vector:

$$
\begin{array}{ll}
t \text {-axis } & : \hat{u}_{t} \\
n \text {-axis } & : \hat{u}_{n}
\end{array}
$$

Curvilinear motion of Point P

Linear velocity of Point P

$$
\begin{aligned}
& \vec{v}=v \hat{u}_{t} \\
& v=\frac{d s}{d t} \quad \text { where } s=r \theta \\
& v=r \frac{d \theta}{d t} \quad \text { where } \frac{d \theta}{d t}=\omega
\end{aligned}
$$

$$
\therefore \vec{v}=\vec{\omega} \times \vec{r}
$$

Curvilinear motion of Point P

Linear acceleration of Point P

$$
\begin{array}{rlrl}
\vec{a} & =\frac{d \vec{v}}{d t}=\frac{d(\vec{\omega} \times \vec{r})}{d t} & & \\
& & & \\
\vec{a} & =\frac{d}{d t} \\
& & \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} \\
& =\vec{\alpha} \times \vec{r} \times \vec{\omega} \times(\vec{\omega} \times \vec{r}) & &
\end{array}
$$

Use vector triple product:
$\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})$
with the angle between \vec{r} and $\vec{\omega}$ $\rightarrow 90^{\circ}$
$\therefore \vec{a}=\underbrace{\vec{\alpha} \times \vec{r}}_{a_{\mathrm{t}}}-\underbrace{\omega^{2} \vec{r}}_{a_{\mathrm{n}}}$
Direction similar to $\vec{v} \quad$ Direction opposite to \vec{r}

$$
\begin{aligned}
& \vec{\omega} \times(\vec{\omega} \times \vec{r})=\vec{\omega}(\vec{\omega} \cdot \vec{r})-\vec{r}(\vec{\omega} \cdot \vec{\omega}) \\
& \vec{\omega} \times(\vec{\omega} \times \vec{r})=\vec{\omega}\left(\omega r \cos 90^{\circ}\right)-\vec{r}\left(\omega \omega \cos 0^{\circ}\right)
\end{aligned}
$$

Curvilinear motion of Point P

Linear acceleration of Point P

$$
\begin{aligned}
& \vec{a}=\vec{\alpha} \times \vec{r}-\omega^{2} \vec{r} \\
& \therefore \vec{a}=a_{t} \hat{u}_{t}+a_{n} \hat{u}_{n}
\end{aligned}
$$

In scalar format:

$$
\begin{aligned}
& a_{t}=\alpha r=\frac{d v}{d t} \\
& a_{n}=\omega^{2} r=\frac{v^{2}}{r}
\end{aligned}
$$

Conclusions

- Position vector of a point on a plane is written in $\hat{\imath}$ and $\hat{\jmath}$ unit vector form.
- There are 3 type of rigid body motion: translation, rotation about a fixed axis and general plane motion.
- In the case of rotation, any point on the body undergoes motion in a circular path.
- The direction of instantaneous velocity \vec{v} is always tangent to the curved path.

Planar Kinematics of a Rigid Body (Translation and Rotation)

"Gravity explains the motions of the planets, but it cannot explain who sets the planets in motion."

- Sir Isaac Newton

