
Page 1 of 4

BFF3302_Sensors and Instrumentations_Lab 01_2016_17

Lab

01

Input-Output Programming through

PC Parallel Port

Prepared By:

Nurul Afiqah binti Zainal

Khairul Fikri bin Muhamad

Ismayuzri Ishak

Fakulti Kejuruteraan Pembuatan, UMP

Lab Location

Sensor & Instrumentations Lab

Lab Outcomes:

By the end of this lab, students should be able to:

1. Write C program to write to parallel port

2. Write C program to read data from parallel port

1.0 Parallel Port Programming

Controlling the “real world” can be accomplished through what we called a “controller”.

Controller is a programmable electronic device that has input, output, microprocessor and

memory. Through controller, we can read real-world signals using input port. The signals can then

be processed by the microprocessor and stored in memory. Likewise, we can control the real

world through the output port.

Any real-world device can be interfaced to the controller for control purposes. In general, there

are three types of controller devices: Personal Computer (PC), microcontroller and

programmable logic controller (PLC). In this lab, we are going to use PC as our controller.

Specifically, we are going to build a simple LED1 circuit (real-world device) that is interfaced to

PC Parallel Port. The PC Parallel Port is either the printer port or a PCI card. The PC parallel port is

the 25-pin connector at the back of a PC unit. We will treat the LEDs as our output devices

meaning that we are going to use PC to control the LED lighting.

WARNING!!! ALTHOUGH THE KNOWLEDGE IN THIS LAB IS AMUSING, DO NOT TRY THIS AT HOME OR

TO YOUR OWN PC. IT MAY DAMAGE YOUR PARALLEL PORT IF NOT CONDUCTED PROFESSIONALLY. I

AM NOT RESPONSIBLE FOR ANY LIABILITY AS A RESULT OF USING THE INFORMATION IN THIS LAB.

THIS EXPERIMENT IS DESIGNED ONLY FOR LABORATORY SETTING. MORE KNOWLEDGE IS REQUIRED IF

YOU WANT TO EXPERIMENT ON YOUR OWN.

1 LED stands for light emitting diode

Page 2 of 4

BFF3302_Sensors and Instrumentations_Lab 01_2016_17

2.0 Parallel Port Background

On the right is the schematic diagram of the PC parallel port connector. There are 25 pins all

together. The 25-pin represents four main functions:

1. First Output Port – the pins from Pin2

to Pin 9. It is called data register.

Later, we will control the voltage of

each of these eight pins through C

program.

2. Input Port – the pins are Pin10,

Pin11, Pin12, Pin13 and Pin15. It is

called status register. One of this

pin will be connected to our switch

as input device.

3. Second Output Port – Pin1, Pin14,

Pin16 and Pin17. These pins are

also output port and are called

control register. This is an extra port in case controlling through our first port is not sufficient.

4. Ground pins which are Pin18 to Pin 25. These are PC ground.

Each output pin can have only two values: either 5 volts (greater than 2.8 volts to be more

precise) or 0 volt. This is what we call digital value. The digital state of “1” or “ON” represents 5V

while the digital value of “0” or “OFF” represents 0 volt.

Let’s say that we have a circuit. Each LED is connected to each output pin at data port.

Remember that the output pins begin from Pin2 to Pin9 and not from Pin1. To turn on the LED, we

need to provide 5 volts to the pin. For instance, if we want to turn on the LED connected to Pin2,

we will set the digital value of Pin2 to “1” so that 5 volts will come out from Pin2 and therefore

turn on the LED. How to set the digital value of Pin2 to “1”? That is why we use C programming.

Finally, the 1 kOhm resistor is used to limit the current taking out from PC. In this case, by OHM’s

law, we know that the current is 5 mA. Since we have 8 LED, we have taken out from PC 40 mA

of current. That is quite reasonable. For the input circuit from external power to the parallel port,

the 47 Ohm resistor should be use in order to limit the input current. You all can calculate the

input current that going through the parallel port at 5 voltage input (write in your technical

report>circuit analysis).

3.0 Output and Input Programming Using C Language

Below is the table that summarizes Bit to Pin Mapping for standard parallel port:

data port base pin 9 pin 8 pin 7 pin 6 pin 5 pin 4 pin 3 pin 2

status port base+1 pin ~11 pin 10 pin 12 pin 13 pin 15

control port base+2

pin ~17 pin 16 pin ~14 pin ~1

bit designation Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

bit value 72 62 52 42 32 22 12 02
decimal equivalent value 128 64 32 16 8 4 2 1

 Symbol ‘~’ is for inverse function.

Page 3 of 4

BFF3302_Sensors and Instrumentations_Lab 01_2016_17

Example program that can be programed is:

If we want to turn all LED at data port, we have to set the output port to “11111111” digital

value. Each “1” represent each pin. Since there are 8 output pins, we set all pins to “1”. Referring

to the table, this digital value is equivalent to 255 in decimal. Therefore, to turn all LEDs, using C

programming we shall write:

(oup32)(0xECD8,255);

“oup32” is a C program user-defined function input or output.

“0xECD8” is the base address of the output port.

“255” is the value that we want the output port to have.

As another example, let’s say that we want to turn on the third LED only at control port. Digitally,

the command should be 00000100. This is equivalent to “4” in decimal value at pin 16. In our C

programming, we shall write:

(oup32)(0xECD8+2,4);

This will cause Pin4 to have 5 volts and the rest of the pins 0 volt.

For the input programming, we want to get the data at data port, we have to set input function.

The C programming shall write:

(inp32)(0xECD8);

This will set all the input data at data port to be read.

Here are example of program to send all data port to low and read the input data at data port:

#include <stdio.h>

#include <conio.h>

#include <windows.h>

typedef short _stdcall (*inpfuncPtr)(short portaddr);

typedef void _stdcall (*oupfuncPtr)(short portaddr, short datum);

// Address PCI card ECD8

int main(void)

{

 HINSTANCE hLib;

 inpfuncPtr inp32;

 oupfuncPtr oup32;

 /* Load the library */

 hLib = LoadLibrary("inpout32.dll");

 inp32 = (inpfuncPtr) GetProcAddress(hLib, "Inp32");

 oup32 = (oupfuncPtr) GetProcAddress(hLib, "Out32");

 short x;

 while (!kbhit()) // the program will stop after pressing any keyboard key

 {

Page 4 of 4

BFF3302_Sensors and Instrumentations_Lab 01_2016_17

 (oup32)(0xECD8,255); // to send all data port pin high

 x = (inp32)(0xECD8); // read data port

 printf("port read %d\n",x);

 }

 /* Unload the library */

 FreeLibrary(hLib);

 return 0;

}

I am not planning to cover 3 credits of C programming but I hope that you can recall whatever

you have learned earlier. Happy experimenting!!

4.0 Lab Activities

1. Turn ON LED 1 and 8 and state the digital value.

2. Turn ON LED 3, 5 and 7 and state the digital value.

3. Turn ON any LED and state the digital value.

References

1. http://www.lvr.com/parport.htm

2. http://www.doc.ic.ac.uk/~ih/doc/par/

3. http://www.epanorama.net/circuits/parallel_output.html

4. http://www.tkk.fi/Misc/Electronics/circuits/lptpower.html

http://www.lvr.com/parport.htm
http://www.doc.ic.ac.uk/~ih/doc/par/
http://www.epanorama.net/circuits/parallel_output.html
http://www.tkk.fi/Misc/Electronics/circuits/lptpower.html

