

BFF3302 SENSOR AND INSTRUMENTATION SYSTEM

Temperature Transducer

Ву

Ahmad Shahrizan Abdul Ghani (shahrizan@ump.edu.my) Nafrizuan Bin Mat Yahya (<u>nafrizuanmy@ump.edu.my</u>)

Faculty of Manufacturing Engineering (FKP)

Communitising Technology

Sensor & Instrumentation System by Ahmad Shahrizan Abdul Ghani.

Chapter Description

- Aims
 - Obtain basic knowledge about temperature transducer.
- Expected Outcomes
 - Able to explain and describe about characteristics and properties of temperature transducer.
- References
 - B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.
 - Introduction to signal processing, instrumentation, and control : an integrative approach / Joseph Bentsman Hackensack, NJ : World Scientific Pub., 2016
 - Transducers for instrumentation / M. G. Joshi, New Delhi, India : Infinity, 2017
 - Instrumentation and measurement in electrical engineering / editor : Harinirina Randrianarisoa, New York : Arcler Press, 2017

Temperature Ranges for Various Application

APPLICATIONS	TEMP RANGES
General purpose for textile, printing, food, rubber, thick plastics, paints, laminating, maintenance	-50 to 1000°C -58 to 1832°F
Life sciences, biology, zoology, botany, veterinary medicine, heat loss and research	0 to 500°C 32 to 932°F
Thin film plastic, polyester, fluorocarbons, low temperature glass	50 to 600°C 122 to 1112°F
Glass and ceramic surfaces, tempering, annealing, sealing, bending and laminating	300 to 1500°C 572 to 2732°F
See-through clean combustion flames and hot gases. Furnace tubes	500 to 1500°C 932 to 2732°F
Medium to high temperature ferrous and non-ferrous metals. See- through glass	250 to 2000°C 482 to 3632°F
Hot and molten metals, foundries, hardening, forging, annealing, induction heating	600 to 3000°C 1112 to 5432°F

Sensor & Instrumentation System by Ahmad Shahrizan Abdul Ghani.

Contact vs Non-Contact

	Contact Methods	Non-contact method
Measuring conditions	 measuring head contacts the measuring objects. No changes should be introduced in the temperature of the measured object when it is brought into contact with the measuring head. 	 Contact with the measuring object is indirect. Thus, the measuring object must be observable.
Measuring range	 Measurement made above 1200° C are difficult, but measurement below 1000° C are easily made. 	 Large errors tend to occur when measurements are made below 1000° C. Measurements above 1000°C are easily made.
Measuring accuracy	 Generally, 0.5 to 1 % 0.01% is possible, depending on the measuring conditions. 	 Generally, around 20°C 5 to 10°C at best
Speed of response	 Generally slow,1 to 2 minutes. May take more than 1 hour in unfavorable conditions. 	 Generally,2 to 3 s . Less than 10 s in the worst case.

Temperature Selection Guides

(http://www.thermometricscorp.com/temsensel.html)

- Temperature Range
- Accuracy
- Repeatability / Stability
- Response Time
- Sensitivity
- Life Expectancy / Replacement Cost
- Cost

Common Temperature Sensors

- IC Temperature Transducer *
- Thermocouples *
- Thermistors *
- Resistance Temperature Detectors (RTDs) *
- Infrared (IR)

IC temperature transducer

- Describe:
 - Working principle
 - Characteristics
 - Properties of the transducer/sensor
 - Construction of the sensor/transducer

Pros and Cons of IC temperature transducer

Disadvantages

- Temp < 200°C
- Power supplied required
- Slow
- Self heating
- Limited configurations

Advantages

- Most linear
- Highest output
- Directly calibrated in °Kelvin
- 1°C initial accuracy available
- Operates from 400 μA to 5 mA.
- Less than 10hm dynamic impedance
- Easily calibrated
- Wide operating temperature range
- Low cost

Thermocouple

Chapter Outline:

- The Thermocouple
- Discussion of fundamentals. Thermocouple characteristics (voltage-temperature). Thermocouple circuits.
- Temperature measurement and output voltage.
- Calibration.

Thermocouple Application

Copper-Constantan (T):

Iron-Constantan (J) :

Chromel-Alumel (K) :

Communitising Technology

Sensor & Instrumentation System by Ahmad Shahrizan Abdul Ghani.

Thermistor

Chapter Outline:

- Discussion of fundamentals thermistor characteristics.
- The effects of self-heating on the thermistor's resistance.
- Temperature measurement circuit.
- Instrumentation amplifier and thermistor bridge circuit.

RESISTANCE TEMPERATURE DETECTOR (RTD)

Chapter Outline:

- Discussion of fundamentals of RTD characteristics.
- RTD principles and construction.
- Temperature measurement circuit.
- RTD response: resistance vs. temperature.

