

BFF3302 SENSOR AND INSTRUMENTATION SYSTEM

Transducer Elements

By

Ahmad Shahrizan Abdul Ghani (shahrizan@ump.edu.my) Nafrizuan Bin Mat Yahya (<u>nafrizuanmy@ump.edu.my</u>)

Faculty of Manufacturing Engineering (FKP)

Communitising Technology

Chapter Description

• Aims

- Obtain basic knowledge about transducer.

Expected Outcomes

- Determine general treatment of instrument elements and their characteristic
- Analyse transducer elements, intermediate elements, and data acquisition system (DAQ)
- Determine principles of the work and derive mathematical model of sensors for measuring motion and vibration, dimensional metrology, force, torque and power, pressure, temperature, flow and acoustics
- References
 - B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.
 - Introduction to signal processing, instrumentation, and control : an integrative approach / Joseph Bentsman Hackensack, NJ : World Scientific Pub., 2016
 - Transducers for instrumentation / M. G. Joshi, New Delhi, India : Infinity, 2017
 - Instrumentation and measurement in electrical engineering / editor : Harinirina Randrianarisoa, New York : Arcler Press, 2017

Sensor & Instrumentation System by Ahmad Shahrizan Abdul Ghani.

Communitising Technology

What is a Sensor?

- A sensor is a device that receives a signal and responds with an electrical signal.
- It detects the parameter
- * Eg. Thermocouple to sense/detect the changing of temperature.

What is Transducer?

- A transducer is a **converter of one type of energy to another**.
- OR
- A device that converts non electrical parameters into electrical signals (voltages or currents) or vice versa that are proportional to the value of the physical parameter being measured.

Introduction

Transducer

Analog		Digital	
variation of input and produce a continuous variation of output		variation of input and produce a digital or discrete output.	
Electromechanical types, potentiometric resistance type, inductance, capacitive, piezoelectric, resistance strain gauge, ionisation and mechano-electronic types.	transducers, comprising photo-emissive, photo- conductive and photo-voltaic	Digital encoder types	Frequency generating types

Communitising Technology

- INPUT TRANSDUCER
- * Also called sensors
- * Convert physical quantity \rightarrow proportional electrical signal.

OUTPUT TRANSDUCER

 Convert an electrical signal → physical quantity that can detect or use externally.

Introduction

Example of transducer in everyday life:

Thermostat in lecture room	Input tranduser that sense room temperature and is used to control air conditioning
Streetlight	Equipped with photo sensor that are used to turn the lights on when sun goes down
Speaker	Output transducer that converts electrical signal into sound energy

* Extra notes can be read at: <u>http://en.wikipedia.org/wiki/Transducer</u> <u>http://www.kpsec.freeuk.com/transduc.htm</u>

Introduction

• A transducer's output can be voltage, current or resistance.

Output	Example of transducer
Voltage	Thermocouple
Current	IC temperature transducer
Resistance	Resistance Temperature Detector (RTD) Thermistor Strain gauge

Electrical transducer

- → sensing device that transform physical, mechanical or optional quantity into an (e.g.) electrical voltage/current proportional to the input measurement.
- Electrical transducer should have following parameter:
 - Linearity input changes directly proportional to output
 - Sensitivity small changes results in changes of output voltage (e.g.)
 - Dynamic range small scale to bigger scale
 - Repeatability produce similar output for same input value
 - Physical size compact, easy to carry/used

Instrumentation systems

• In a nutshell, an instrumentation system should have sensors, signal conditioners, signal converters and a display.

Electromechanical types

• An electrical output is produced due to an input of mechanical displacement or strain.

 The mechanical displacement or strain input in turn may be produced by a primary sensor due to the input physical variable which may be pressure, flow, etc.

Electromechanical types

Scheme for measurement using electromechanical transducer:

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Electromechanical types

B.C.Nakra and K.K. Chaudhry, 2012.

Instrumentation measurement and analysis, 3rd

ed., Tata-McGraw-Hill.

Potentiometric resistance-type transducer

Electrodynamic transducer for rotary motion

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Sensor & Instrumentation System by Ahmad Shahrizan Abdul Ghani.

Communitising Technology

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Communitising Technology

Fig. 4.10

Variable inductance transducer for rotary motion

Proximity type inductance transducer

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Sensor & Instrumentation System by Ahmad Shahrizan Abdul Ghani.

Communitising Technology

Capacitive type transducer

The capacitance C between two plates is given by

$$C = \frac{1}{3.6\pi} \varepsilon \frac{A}{d}$$
(4.1)

where

\$0

C is capacitance, μF A is area of plates, cm² d is distance between plates, cm ε is dielectric constant of the medium between the plates (= 1 for air).

Piezo-electric transducer

C being the capacitance of the crystal (μF), ε the dielectric constant of the crystal material, A its area (cm²) and t its thickness (cm). If A is in square metre (m²), t in metre (m) and C in farads (F), Eq. (4.8) becomes:

$$C = \frac{\varepsilon A}{1.31 \times 10^{11} t} \tag{4.9}$$

Relation between force P and deformation x_i is:

$$P = EA \frac{x_{\rm i}}{t} \tag{4.10}$$

E being the Young's modulus of the crystal material.

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Piezo-electric crystal subjected to force P

Communitising Technology

Piezo-electric transducer

S.No.	Material	Charge sensitivity pC/N	Dieelectric constant ϵ	Young's modulus N/m ²
1.	Quartz	2.0	4.5	9×10^{10}
2.	Tourmaline	1.9	6.6	16×10^{10}
3.	Barium titanate	150	1380	12×10^{10}
4.	Lead zirconate titanate	265	1500	7.9×10^{10}

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Communitising Technology

Resistance strain gauges

Strain gauge transducers are of two types:

- Unbonded strain gauge 1.
- 2. Bonded strain gauge

Fig. 4.30

 (\mathfrak{I})

Wheatstone Bridge

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Fig. 4.31 Balanced strain gauge

Communitising Technology

Analysis of Bridge Circuits

• When the bridge is balanced, $V_o = 0$

$$V_{o} = V_{c} \left[\frac{R_{2}}{R_{1} + R_{2}} \right] - V_{c} \left[\frac{R_{x}}{R_{3} + R_{x}} \right] = 0$$

$$V_{c} \left[\frac{R_{2}}{R_{1} + R_{2}} \right] - V_{c} \left[\frac{R_{x}}{R_{3} + R_{x}} \right] = 0$$

$$R_{2}R_{3} + R_{2}R_{x} = R_{x}R_{1} + R_{x}R_{2}$$

$$\left[\frac{R_{2}}{R_{1} + R_{2}} \right] - \left[\frac{R_{x}}{R_{3} + R_{x}} \right] = 0$$

$$R_{2}R_{3} = R_{x}R_{1}$$

$$R_{2}R_{3} = R_{x}R_{1}$$

$$R_{x} = \frac{R_{2}R_{3}}{R_{1}}$$

$$R_{x} = \frac{R_{2}R_{3}}{R_{1}}$$

