

BFF3302 SENSOR AND INSTRUMENTATION SYSTEM

Signal Conditioning

By

Ahmad Shahrizan Abdul Ghani (shahrizan@ump.edu.my) Nafrizuan Bin Mat Yahya (<u>nafrizuanmy@ump.edu.my</u>)

Faculty of Manufacturing Engineering (FKP)

Communitising Technology

Chapter Description

• Aims

- Obtain basic knowledge about electronic, measurement, sensors, and instrumentation
- Able to analyse particular sensor, instrument, and measurement situation.
- Expected Outcomes
 - Determine general treatment of instrument elements and their characteristic
 - Analyse transducer elements, intermediate elements, and data acquisition system (DAQ)
 - Determine principles of the work and derive mathematical model of sensors for measuring motion and vibration, dimensional metrology, force, torque and power, pressure, temperature, flow and acoustics
- References
 - B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.
 - Introduction to signal processing, instrumentation, and control : an integrative approach / Joseph Bentsman Hackensack, NJ : World Scientific Pub., 2016
 - Transducers for instrumentation / M. G. Joshi, New Delhi, India : Infinity, 2017
 - Instrumentation and measurement in electrical engineering / editor : Harinirina Randrianarisoa, New York : Arcler Press, 2017

Signal conditioning

Signal conditioning \rightarrow used to process output signal from sensor of a measurement system to make it suitable for the next stage operation.

- Most sensors \rightarrow weak output signals.
- The magnitudes signals \rightarrow the order of **microvolts** (µV) or **pico-amperes** (pA).
- The output signal of any transducer usually needs to be modified by elements known as **intermediate elements**.
- Standard electronic data processors (e.g. A/D converters, frequency modulators, data recorders, etc.) → require input signals of sizable magnitudes on the order of volts (V) and milliAmperes (mA).

Communitising Technology

Introduction

- 1. Amplifier = for amplifying the transducer output, which may be small.
 - An element that increase the magnitude of the signal from a transducer so that it can be conveniently displayed or recorded.
 - Can be identified as an electronic devices / group of devices, which increase the magnitude of voltage / current signal, without altering the signal basic characteristic.
 - It has a **power supply separate** from the signal that it is acting on.
- 2. Attenuators = to reduce the magnitude of the signals from the transducers.
- If for some reasons we need to supply internal components inside data acquisition system with low voltage, we should use so called attenuator.
 - Attenuator \rightarrow electronic device that reduces the (magnitude) power of a signal without distorting its waveform.

Introduction

3. Compensating devices= to improve characteristics like frequency response, impedance loading, etc.

4. Differentiating or integrating elements= to proportionate the output to the desired input which may be, for example, displacement, velocity or acceleration, in any given situation.

5. Filters= for filtering out unwanted portions of the signal.

6. A-D/D-A converter = convert analog type signal to digital form or vice versa.

7. Data transmission elements= transmit the transducer output to certain distance as desired.

Mechanical Amplifying Element

$$X_0 = \left(\frac{R}{r}\right) X_{in}$$

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Dr NMY

Hydraulic Amplifying Element

- Is find a wide range of applications in form of hydraulic actuators in the control elements used in the automobile hydraulic brakes and hydraulic steering systems.
- Pro= compactness for a specified force.
- Cons= possible **leakages** and problems in dusty environments.

Hydraulic Amplifying Element

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Pneumatic Amplifying Element

Pneumatic relay as amplifier

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Pneumatic Amplifying Element

- In order to amplify pressure signal p_2 , a ball type relay is shown which is operated by the motion of an elastic diaphragm which get deflected due to p_2 .
- If the ball is at the lowest position, pressure p_3 is atmospheric while at the topmost position, p_3 equals air supply pressure p_1 .
- Thus, *p*₃ changes from zero gauge pressure to *p*₁ due to a small pressure change in *p*₂ and so the relay can be treated as a pneumatic amplifier.
- These are used in industrial environment where compressed air is easily available.

Optical Amplifying Element

- Most common used in the taut suspension type of the optical type of galvanometer which is a very sensitive type of instrument.
- **Pro**= inexpensive but provides a large amount of amplification to the input signals.
- Cons= due to inertia effects of because of mirror mass cannot be employed in the dynamic type of measurements.

Optical Amplifying Element

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Electrical Amplifying Element

- Most of the electrical amplifiers are either **transistor** based or employ suitable **integrated circuits** (ICs) or both.
- Nowadays, a wide variety of amplifiers are available to meet the specific requirements in the signal conditioning element of the instrument systems.
- In amplifiers, an **external power source** is invariably required.

Electrical Amplifying Element

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Electrical Amplifying Element

• Type of amplifiers:

- AC and DC amplifiers
- Carrier amplifiers
- Chopper amplifiers

