
Programming For Engineers

C Bitwise Operations

by

Wan Azhar Wan Yusoff1, Ahmad Fakhri Ab. Nasir2

Faculty of Manufacturing Engineering
wazhar@ump.edu.my1, afakhri@ump.edu.my2

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

0.0 Chapter’s Information

• Expected Outcomes

– To organize C source, header and library files.

• Contents

1.0 Introduction

2.0 Complementary Bit Operator

3.0 Right and Left Shift Bit Operator

4.0 AND Bit Operator

5.0 OR and XOR Bit Operator

6.0 Logical Operator

7.0 Summary

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

1.0 Introduction

• We are going to manipulate bits of a variable. Knowing how

manipulate bits will increase our ability to program. We will learn bit

operations while displaying the bits using our simple program to

display decimal number in binary format.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

2.0 Bit Complimentary

• Bit complimentary means changing the bit either from 0 to 1 or from

1 to 0. In other words, complimentary operator reverses the bit. The

operator for complimentary is ~ (tilde).

• In the example below, we have a number a = 187 and show the bits.

Its complimentary is ~a, and we show that ~a bits are opposite to a.

This is called one complementary.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

2.0 Bit Complimentary

• In one complementary, we notice that a is 187 and ~a is -188. But if

we add a + (~a) we will not get zero as we expected. This is shown

in the program below. The answer to a + (~a) = -1. We can conclude

that ~a is not truly the negative of a.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

2.0 Bit Complimentary

• To get negative of a, we have to use two complimentary. The rule for

two commentary is:

1. Reverse all bits (complimentary one)

2. Add 1

• Example below shows the two complimentary.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

2.0 Bit Complimentary

• Using ~ (tilde) bit operator, we can create a negative number. But,

we must use two-complementary in order to get the true negative of

a number.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

3.0 Right and Left Shift Bit Operator

• We use bit shift operators to shift the bit to the left or to the right. We

use << operator to shift the bits to the left and >> operator to shift

the bits to the right. An example below shows the idea.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

3.0 Right and Left Shift Bit Operator

• In the previous example, we let a = 128. We notice that when we
shift right 1 position, the bit shift to the right and the left most bit is
replaced by zero. The value after the right shift is half of the original
number. Notice also, when we shift to the left, we double the
number. The number is shifted to the left 1 position and 0 bit is
replace to the rightmost bit.

• Consider another example shown on the next page. Now, we shift 3
positions. In the first case, we shift to the right 3 positions and the 3
bits on the right disappear. Then three 0-bits on the left is added.
This is called zero-padding. Notice the number is divided by 8
because each shift is divide-by-2. Three shift to the right then means
divide-by-2, divide-by-2 and divide-by-2 which is divide-by-8.

• Notice also that when the computer divide the number it will retain
the integer number. For example 187/8 = 23.375. Then the number
is 23.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

3.0 Right and Left Shift Bit Operator

• Similarly, when we shift 3 positions to the left, we shift the bits to the

left 3 times and the rightmost bits are replaced by 0-bits. Shifting to

the left also is double the number. In this case we double the

number 3 times i.e. 2 x 2 x 2 = 8 times. The number 187 x 8 = 1496

is indeed the number we obtain.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

4.0 AND Bit Operator

• We can compare two numbers bit by bit. We AND a number by

comparing each bit position and will produce 1-bit if both bits are 1-

bit. Any other combination will produce 0-bit. The AND bit operator is

& (ampersand). An example below will clarify the idea.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

4.0 AND Bit Operator

• In the previous example, we have two numbers a = 187 and b =

200. We then AND these two numbers bit by bit. Notice that only

combination of 1-bit will result in 1-bit. Else, the AND operator will

give 0-bit. The truth table is given below.

AND Truth Table

a b a & b

0 0 0

0 1 0

1 0 0

1 1 1

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

4.0 AND Bit Operator

• One application for AND operator is masking. Masking is making all

bits become 0 if we AND a number with 0. For example, if we want

to know a number is even or odd, we can know this by knowing the

rightmost bit number. If the rightmost bit is 0, the number is even. If

the rightmost number is 1, it is an odd number. We show an

example below.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

4.0 AND Bit Operator

• In the previous above we AND number 187 with number 1. Since we

“mask” all number except the first bit (because we AND with number

1 which all zeros except the first bit), we can check the first bit. If the

first bit is 0 than the number is even. If the number is 1 then the

number is odd. The even example is given below.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

4.0 AND Bit Operator

• So, by masking we can know the number is odd or even. Similarly,

we can determine whether the number is positive or negative. If the

leftmost number is zero, it is a positive number. If it is negative it is a

negative number. Let us check a few number using masking.

• Look at the program on the next page. We have a negative number -

188. Because this is a negative number, the leftmost bit is 1-bit. We

need to AND with 10000000 00000000 00000000 00000000. How to

create this number? What we did is creating a number b = 1 and

shift left 31 positions i.e. b = b <<31. You can see the result at the

output line 2 which is -2147483648.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

4.0 AND Bit Operator

• Then, after we AND number a and number b, we can see that there

is bit-1 at the leftmost bit. That tells us that the number is negative.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

5.0 OR and XOR Bit Operator

• XOR is the operator to know whether the two compared bits is equal

or not equal. XOR is called exclusive or. If the bits are equal, the

result is bit-0 and if the bits are not equal the results is bit-1. The

operator for XOR is ^ (caret character).

• OR on the other hand will produce bit-1 if there exists bit-1 in either

of two bits. If there is no bit-1 i.e. both bits are bit-0, it will produce 0-

bit. The operator for OR is | (the vertical slash character).

• The truth table for XOR and OR are given below.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

5.0 OR and XOR Bit Operator

• In the example shown on the next page, we XOR and OR two
numbers. The first two numbers is XOR and we notice that
whenever the two bits are unequal 0-bit is produced. In the second
case, we OR the number. We notice that if there exists bit-1, then
bit-1 is produced.

XOR Truth Table OR Truth Table

a b a ^ b a b a | b

0 0 0 0 0 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 1

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

5.0 OR and XOR Bit Operator

• Important different is at bit position 4 from the leftmost. XOR will

result is bit-0 (bit-1 XOR bit-1 – bit-0). However, the OR operation

will give bit-1 (bit-1 OR bit-1 – bit-1). Please notice the different.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

6.0 Logical Operator

• Logical operator is different from the bitwise operator.

1. Logical operator compare TRUE and FALSE and will give

result either TRUE or FALSE. Any number value that is non-

zero is TRUE. Only zero is false. So, number 188, -188, 200

are all TRUE. The operators are && for AND, || for OR and !=

for XOR.

2. Bitwise operator compare the bit logic not the number logic.

The results from bitwise operator is another number.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

7.0 Summary

• In this note, we learn about bitwise operators:

1. We learned about complementary operator (~) that reverses all

bits. But, in order to represent flip number from negative to

positive or vice versa, we use two-complement. In two-

complement, we reverse the bits and we add 1.

2. We learned the right and left shift operator. Right shift will shift

the bits to the right and replace the leftmost bits with zero. The

right shift will shift the bits to the left and replaces the rightmost

bits to zero. Right shift halve the value for every shift while the

left shift double the value for every shift.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

7.0 Summary

3. We learned about logical AND. We know than using AND we

can do masking. By masking, we can detect whether the

number is even or odd and positive or negative. Masking

allows us to check individual bit.

4. We learned about XOR and OR. Exclusive OR is to check the

equality between bits. OR detects the present of bit-1.

5. Finally, we learned that LOGICAL OPERATOR is not the same

as BITWISE OPERATOR. In logical operator, we compare

TRUE/FALSE. In bitwise operator, we compare individual bits

of a number.

PFE – C Bitwise Operations by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir

