‘I Universiti
Malaysia
PAHANG

Programming For Engineers

Pointers in C Programming: Part
02

Y
Wan Azhar Wan Yusofft, Ahmad Fakhri Ab. Nasir?
Faculty of Manufacturing Engineering
wazhar@ump.edu.my?, afakhri@ump.edu.my?

0.0 Chapter’s Information

» EXxpected Outcomes
— To further use pointers in C programming

« Contents
1.0 Pointer and Array
2.0 Pointer and String
3.0 Pointer and dynamic memory allocation

1.0 Pointer and Array

« We will review array data type first and later we will relate array with
pointer.

* Previously, we learn about basic data types such as integer,
character and floating numbers. In C programming language, if we

have 5 test scores and would like to average the scores, we may
code in the following way.

1

1.0 Pointer and Array

$include <stdio.h>

int main{()

{
float scorel = 26.3;
float scoreZ = 77.2;
float score3 = 91.4;
float scored4 = 56.7;
float scoreS = 53.9;

i
L)
e

float average = |
average = (scorel+scoreZ+score3+scored+scores)/5;

printf("The scores are\n"):;

printf("Scorel = $4.1f\n",scorel);

printf("Scorel $4.1f\n",scorel);

printf("Scorel $4.1f\n",score3);

printf("Scorel $4.1f\n",scored);

printf("Scorel $4.1f\n",scored);

printf ("The average score is = $4.1f\n",average):;
return 0;

1.0 Pointer and Array

B | "CAUsers\user\Desktop\BHMZ2013 Programming for Engineers\Array_... I. = | Cl |du

The average zcopre iz =

Process returned @ (Ox@)> execution time = B.016 =
Press any key to continue.

« This program is manageable if the scores are only 5. What should
we do if we have 100,000 scores? In such case, we need an
efficient way to represent a_collection of similar data type!. In C
programming, we usually use array.

« Array is a fixed-size sequence of elements of the same data type.?
* In C programming, we declare an array like the following statement:

1.0 Pointer and Array

float score[5]:

« The above statement tells the compiler that we want to group five
float numbers in one array called score. Thus in computer memory,
we organize the data like the following:

score[0] | four byte of a float number

score[1] | four byte of a float number

score[2] | four byte of a float number

score[3] | four byte of a float number

score[4] | four byte of a float number

1.0 Pointer and Array

« So the compiler has allocated 5 memory spaces for each float
number. Notice that the subscript (the number inside the
parenthesis) is from O to 4 not from O to 5 because we allocate only
5 memory spaces and we start our subscript from 0. Be aware that
in an array, there is only one data type, in this case the float data
type. Thus, the total bytes reserved for the variable score[5] are 20
bytes.

« Each data in an array is called an element of an array. In our case,
score[2] or score[4] is an element of the array score[5]. Similarly, we
can declare arrays for other data types.

1.0 Pointer and Array

int number[100] - array name “‘number” with 100 sequence of
integer data (4000 bytes).

char huruf[53] - array name “huruf” with 53 sequence of character
data (53 bytes).

double points[1000] - array name “points” with 1000 sequence of

double data (12,000 bytes).
« The elements of an array can be initialized in several ways:
1 Basic initialization - initialize all values in the array.
int number([5] = {3,7,1,1,21};

* In this case, number[0] = 3, number[1] = 7, number[2] = 1, number[3]
=1 and number[4] = 21.

1.0 Pointer and Array

1 Partial initialization - initialize some values in the array.
int number([5] = {3,7};

* In this example, the first two elements are initialized while the rest is
zero. Specifically, number[0] = 3, number[1] = 7, number[2] = O,
number[3] =0 and number[4] =O0.

] Initialize to all zero - int number(5] = {0};

« To display the elements of an array we need to use repetitive
structure (loop) such as the for-loop or the while-loop.

« To continue with our first example, we write a program using an
array data type.

1.0 Pointer and Array

$include <stdio.h>
int main()
{

float score([5] = {8¢.3,77.2,91.4,56.7,83.9};
int i;

printf ("The scores are:\n\n");
for (i=0;i<5;i++)

printf ("Score([$d] = $4.1f\n",i,score[i]):
return 0;

-+ "C:\Documents and Settings\user\Deskiop\BHM201 3 Programming fo

Ccoreld4]

1.0 Pointer and Array

« To sum and average a group of numbers, array is the appropriate
data structure to use. In an example below, user can sum and
average numbers regardless the quantity of numbers.

1 | l.

1.0 Pointer and Array

This program is strate the use of an arr T erform the s and averaging number
int main()
{ A Get the number of students.

int num of students;
printf("Please enter the number of students:");
scanf ("%d", snum of_students); printf("\n"):

2y in all the marks into an arra alled marks
determines the size of the array
float marks[num of_ students]:;
int i;
for (i=0;i<num of_ students;i++)
{ printf("Please key in the $d mark:",i+l):;
scanf ("$f",smarks[i]); }

&SALIIT LI o Wll Qilll LT Qvoiadgc < & LUIT QL AO

float sum = 0;

float average = 0;

for (i=0;i<num of_ students;i++)
{ sum = sum + marks[i]:; }
average = sum/num of_ students;

W 11l3pPla ISSULLS
r

printf(” \n\n") ;
for (i=0;i<num of_students;i++)

{ printf("\tMark $d\t:%9.2f\n",i+l,marks[i]); }
printf(" \n\n");
printf("\tSum\t:$9.2f\n",sum);
printf("\tAverage\t:%$9.2f\n",average);

printf(" \n")2

End the prograr

return 0; }

1.0 Pointer and Array

B | "C\Users\user\Desktop\BHM2013 Programming for Engineers\Program Exampl

Please enter the number of students:5h

Pleaszse key in the mark:66.78
Please key in the mark:=98._43
Pleaszse key in the mark:87.63
Please key in the mark:=49 .67
Pleaszse key in the mark:78.68

Mark 1 = 66.98
Mark 2 : 78.43
Mark 3 = 87.63
Mark 4 : 49 .67
Mark & = 78.68

Sum : 373.31
Average = 74_66

Process returned B (BxB> execution time : 26.561 =
Press any key to continue.

 To determine the highest and the lowest numbers from a group of
numbers, we can also use an array.

1.0 Pointer and Array

$¢include <stdio.h>
int main()

{ \ @t the number of students

cL AT LWGLUOT O

int num of students;
printf("Please enter the number of students:");
scanf ("$d", snum of students);
printf("\n");

: ey in all € marks into an array callsd mar
tice © t the abl=s "nun f 8t &nts
3: C = riable "pump of students
termines the size of the ary

determine L S12€ 0L ne array.
float marks[num of students];
int 1i;
for (i=0;i<num of_students;i++)
{ printf("Please key in the %d mark:",i+l);

scanf ("$f",emarks[i])s; } /* Now, detsrmine the highest of the marks
float highest = 0;
for (i=0;i<num of_ students;i++)
{ if (marks[i] > highest)

highest = marks[i]: } /* Now, determines the lowest of the marks

float lowest = 100000000.0;
for (i=0;i<num of_ students;i++)
{ if (marks[i] < lowest)

lowest = marks([i]; } A Now, display the results
printf(" \n\n");

for (i=0;i<num of_ students;i++)

{ printf ("\tMark $d\t:%$9.2f\n",i+l,marks[i]); }
printf(" \n\n");
printf("\tLowest\t:$9.2f\n", lowest);

printf ("\tHighest\t:%$9.2f\n" highest);

printf(" \n");
return 0; }

1.0 Pointer and Array

o "C:\Documents and Settings\user\Desktop\BHM 2013 Programming

key in
key in
key in
key in
key in
key in
key in

Mark
Mark
Mark
Mark
Mark
Mark
Mark

Lowest :
Highest :

« To represent tabulated data, we use 2 dimensional arrays. Below is
a table of times versus speeds from an experiment. The first two
columns are taken from experimental data while the data in the third
column is calculated from the first two columns.

1.0 Pointer and Array

Times [seconds) Speed (rad/sec) Average Acceleration (rad/sec?)
0.00 0 270 _s5
0.10-0.00
0.10 5 =273 _gp
020=0.10
19-13
0.20 13 = =
0.30-0.20
27-19
0.30 19 = — = B0
040 =030
0.40 27 = 3727 _g
(.50 = 0.40
0.50 35

« An example below shows how to declare and operates a 2-D array.

1.0 Pointer and Array

int col;
int row_size
int col_size

ct

1N18 NOW W€ 1nltlallZzZ€ --L array. LaTter wWe wWlll read Iror
float kinematics[€][3] = { 0.00,0.00,0.00,
0.10,5.00,0,00,
0.20,13.00,0.00,
0.30,1%.00,0.,00,
0.40,27.00,0.00,
0.50,35.00,0.00 };

‘Calculate the third column data

for (row=0;row<row_size-1;row+t+)
kinematics[row] [2] = (kinematics[row+l][l] - kinematics[row][l])/(kinematics[row+l][0] - kinematics[row] [(]):

NOwW, dlisplay The Xresults

printf(" \n\n");
for (row=0;row<row_size;row+tt)
{

for (col=0;col<col_size;col++)
{
printf("$9.2I\t", kinematics[row] [col]);

}

printf("\n"):;
)
printf(" \n\n");
return 0;

1.0 Pointer and Array

e "C:\Documents and Settings\user\Desktop\BHM2013 Programming

EnDERR®

Process returned B {Bx execution time =
Press any key to continue.

« What is an array has to do with pointer? The name of an array is a
pointer to the first element of an array. The example is illustrated
below.

1.0 Pointer and Array

$include <stdio.h
$include <stdlib.h
int main()

for (i=0;i<5;i++)

printf("a[3d] = $d\t*(a+3d) = %d\n",1i,a[i],1i,*(a+i)):
}

return 0; L FA\Wan-Azhar-Wan-YusofPOWAWY-Programming-for-Engineers\WA_.. — [

'_'l.

o W

execution time :@: 8.831

1.0 Pointer and Array

* In the previous example, *(a) = a[0], *(a+1) = a[1], *(a+2) = a[2] etc.
We can say that the name of an array contains the address of the
first array element. In fact, we can declare an array using pointer as
shown below.

¢include <stdio.h>

#¢include <stdlib.h>

double average(int a[], int length);
int main()

{
int a[5] = {1,2,3,4,5);
printf("The average of number in array a = $f\n",average(a,3)):
return 0; T - .
} £ R FAWan-Azhar-Wan-Yusof A WAWY-Programming-for-Engineers\WAWY-Po.. — O
double average(int* a, int length) e R o n p _
(The average of number 1n array a =
int i;
double sum =0: Process returned @ (0x0) execution time : ©.822 s
for (i=0;i<length;i++) Press any key to contilnue.
sum += *{a+i);
return sum/length;
}

1.0 Pointer and Array

* Notice that, in the above program, passing an array is using a
pointer. In this case, the declaration in the function parameter is a
pointer to an integer, int* a. Actually, we pass the address of the first
element of an array to the function. This is very important point — the
size of an array is not relevant. We can have an array of 1000
elements but since we pass only the address, the function can
works on an array without the need to copy all elements of the array.
Another important point is to always pass an array to a function
together with the length of the array. Otherwise, the function will not
know the size of an array.

2.0 Pointers and String

« A string is an array of character with NULL character as the last
element. The NULL character is the number 0. This is different from
character zero (‘0’) which value is 48. For example the string “wawy”

IS an array of 5 bytes which are ‘w’, ‘a’, ‘w’, 'y’ and \0’. We provide a
program below to illustrate the various declaration of a string.

$include «

B FAWan-Azhar-Wan-Yusof A\ WAWY-Programming-for-Engineers\WAWY-Pointer\point... —

$include <
int main()
{
char strl[5] = "wawy":
char* strZ = "wawy"

wawy

char str3[] = "wWawy"s rocess returned @ (0x0) execution time :
printf("gtrl = $s\n",strl); "ESS to continue.

printf("gtx2 = $s\n",stri);

printf("gtr3 = $s\n",str3);

return 0;

2.0 Pointers and String

« Furthermore, we access string just like we access array and pointer.
Study the example below:

|
B FaywWan-Azhar-Wan-Yusoff\WAWY-Programming -for-Engineers \WAWY-P... —]

#include <stdic.h> rl3
$include <stdlib.h> str[2]
int maini() he MNULL
I The MNULL acter char er =
= . What is after the NULL character! = s
ar :

ch = "wawy"[1]: ~0C (0x0) xecution time :
printf("ch = %c\n™,ch): 1

char* str = "WaWy" s

printf ("gLr[3] = %c\n",str([3]):
printf ("gtr[2] = %c\n", *(str+l));

printf ("The NULL character number = %dkn",str[4]j;|
printf ("The NULL character character = %c\n",str[4]});
printf ("What is after the NULL character! = %c\n",str[3]):

return 0;

2.0 Pointers and String

« We can use string library to manipulate string data. The library is
<string.h>. In the following example, we perform 3 string functions:

(1) copy string, (2) determine the string length and (3) combining
string.

| B FAzWan-Azhar-Wan-YusoffWAWY-Programming-for-Engineers\Wa... — O #

$include <stdio.h>
$include <stdlib.h>

$¢include <string.h> - strl =< Length of str
? : o ing..

int main() P L

{ Combine string = hellowawy

char *‘strl = "wawy";
char str2[5];
strcpy(str2,strl); | Lo 355

printf("Copy string...\n"):;

printf("gtrl = $s\tgtr2 = $s\n",strl,strl);

printf("String length...\n");

printf("Length of gtrl = %d\tLength of gtrZ = $d\n",strlen(strl),strlen(strl)):;
printf("Combine string...\n"):;

char str3[Z0] = "helle";

printf("Combine string = $s\n",strcat(str3, "wawy"))’

return 0;

Process returned @ (@x9) execution time : ©.831 s
Press any key to continue.

} BY NG SA

3.0 Pointer and Memory Allocation

« Data structure of C program is fixed. For example, in our program
we define the data type such as integer, double, array of integer,
string etc. before the program runs. Once we run the program, we
cannot define a new variable. Is there any way for us to define a
new variable during the running of the program?

« C use dynamic data storage allocation to create new space for data.
This function is available in <stdlib.n>. We will show you two
important functions: malloc() and calloc(). We use malloc() to
allocate (create) a block of memory and does not initialize. We use
callocc() to allocate a block of memory and clears it. We provide a
program example to clarify this idea.

3.0 Pointer and Memory Allocation

B! FyWan-Azhar-Wan-Yusoff\ WAWY-Programming-for- Engineersh,.. - (]
#$include <stdio.h> e EDs Falue;
Value:

2inr~rlnde atrdlib
slncliuge sStalipb.n \ Value:
int main() C)OAT Value:
{ A, : (UERTTER

int i;

char* p;

p = malloc(1000);
if (p==NULL)

printf("fail to allocate memory.\n"); execution time : 0.016 s

for (i=0;i<5;i++)
printf ("Address: sp\tValue: $d\n",p+i,* (p+i)):
printf("\nNow, change memory value.\n");
for (i=0;i<5;i++)
{
Mpt+i)=1i;
printf ("Address: $p\tValue: $d\n",p+i,*(p+i)):
)
free(p):
return 0;

3.0 Pointer and Memory Allocation

* In the previous example, we create 1000 bytes of extra memory
space and get the address of the first byte and store it in pointer p.
Knowing the p address, we can observe the first 5 bytes. Since
malloc() does not initialize, we get garbage. Then, we change the
value of the first 5 bytes by using indirection of pointer p. This
means that we can have new memory space to store data. Lastly,
we need to “free-up” the space after we use by calling the function
free();

« Our next example is to use calloc() function. We need to supply to
information to calloc() (1) the number of elements and (2) is the size
of one element. For instance, if we want to have 10 integer space,
we should call calloc() something like this: p = calloc(10, sizeof(int));

« In the following example, we create 5 new spaces for double and
give values to all of them.

3.0 Pointer and Memory Allocation

B ' FAWan-Azhar-Wan-Yusoff\WAWY-Programming-for-Engineers\WAWY-Paint.. —

Value
Value:
int main()
{ i Value:
int i; value.
double* p:;

p = calloc(5, sizeof (double)):
if (p==NULL)
printf("fail to allocate memory.\n");

n

for (i=0;i<5;i++)
printf("Address: s$p\tValue: $d\n",p+i,*(p+i)):;

printf("\nNow, change memory value.\n"):;

for (i=0;i<5;i++)

{
Mpti)=3.14%1i;
printf("Address: s$p\tValue: $i\n",p+i,*(p+i)):;
}
free(p):
return 0;

3.0 Pointer and Memory Allocation

* Notice that, by using calloc(), we manage to initialize to zero value.
Also, do not forget to free the space by calling free() after we finish
using it.

* In summary, we have use pointers in many ways.
[1 We use pointer as a variable to the address of another variable.

1 We learn how to inspect the address and content of our
memaory space.

1 Third, we learn how to pass pointer to a function so that we can
manipulate more than one variable solving the issue that a
function will return only one value.

1 We know that array and pointer are closely related.

3.0 Pointer and Memory Allocation

1 We know that string is an array of character terminated with
null character. We also know that a string can be accessed
through pointer.

(1 We can create memory space during execution of a program.
We use dynamic memory allocation functions and receive the
pointer to the address of the first byte of the memory block. We
can store data but we also remember to free up the memory
space after we use.

