## Introduction to Infrastructural Engineering

## Introduction to Traffic Engineering

by

Author Name: DR. MD NURUL ISLAM Faculty: FTEK

email: mdnurul@ump.edu.my

## Outlines

## 1. Basic Concepts

## a. Flow Rate

b. Spacing
c. Headway
d. Speed
e. Density

## 2. Relationships

3. Example

## Flow Rate (q)

- The number of vehicles ( n ) passing some designated roadway point in a given time interval (t)

$$
q=\frac{n}{t}
$$

- Units are typically vehicles/hour
- Flow rate is different than volume


## Spacing

- The distance (ft) between successive vehicles in a traffic stream, as measured from front bumper to front bumper



## Headway (h)

- The time (in seconds) between successive vehicles, as their front bumpers pass a given point.

$$
t=\sum_{i=1}^{n} h_{i}
$$

$$
q=\frac{n}{\sum_{i=1}^{n} h_{i}}=\frac{1}{\bar{h}}
$$

## Headway

## EXHIBIT 8-28. TIME HEADWAY DISTRIBUTION FOR LONG ISLAND EXPRESSWAY



Source: Berry and Gandhi (13).

## Speed

- Time mean speed (spot speed)
- Arithmetic mean of all instantaneous vehicle speeds at a given "spot" on a roadway section
- Space mean speed (u)
- The mean travel speed of vehicles traversing a roadway segment of a known distance (d)
- More useful for traffic applications


## Space Mean Speed

- It is the harmonic mean (1/H = 1/a + 1/b + ...)

$$
u=\frac{\frac{1}{n} \sum_{i=1}^{n} l_{i}}{\bar{t}} \quad \bar{t}=\frac{1}{n}\left(t_{1} l_{1}+t_{2} l_{2}+\ldots+t_{n} l_{n}\right)
$$

- Space mean speed is always less than time mean speed


## Time Mean vs. Space Mean Speed

EXhibit 7-1. TypIcal Relationship between time Mean and Space mean speed


Source: Drake et al. (1).

## Density (k)

- The number of vehicles ( n ) occupying a given length (I) of a lane or roadway at a particular instant
- Unit of density is vehicles per mile (vpm).

$$
k=\frac{n}{l}=\frac{q}{u}
$$


(cc) (i)(-) Introduction to Traffic engineering BY Dr EY NC SA MD Nurul Islam

## Other Concepts

- Free-flow speed ( $u_{f}$ )
- Jam density ( $\mathrm{k}_{\mathrm{j}}$ )
- Capacity ( $\mathrm{q}_{\mathrm{m}}$ )

$$
\begin{aligned}
\text { Density }(\text { veh } / m i) & =\frac{5,280}{\text { spacing }(f t / v e h)} \\
\text { Headway }(s / v e h) & =\frac{\text { spacing }(f t / v e h)}{\text { speed }(f t / s)} \\
\text { Flow rate }(\text { veh } / h r) & =\frac{3,600}{\text { headway }(s / v e h)}
\end{aligned}
$$

## Sub-Surface Drainage Using Ditches

Given five observed velocities ( $60 \mathrm{~km} / \mathrm{hr}$, 35 $\mathrm{km} / \mathrm{hr}, 45 \mathrm{~km} / \mathrm{hr}, 20 \mathrm{~km} / \mathrm{hr}$, and $50 \mathrm{~km} / \mathrm{hr}$ ), what is the time-mean speed and space-mean speed?
Solution:
Time-Mean Speed:
$=(60+35+45+20+50) / 5=42 \mathrm{~km} / \mathrm{hr}$

Space-Mean Speed:
$=5 /(1 / 60+1 / 35+1 / 45+1 / 20+1 / 50)$
$=36.37 \mathrm{~km} / \mathrm{hr}$

## Exercise example

Given that 40 vehicles pass a given point in 1 minute and traverse a length of 1 kilometer, what is the flow, density, and time headway?
Solution:
Compute flow and density: Flow rate $($ veh $/ \mathrm{hr})=\frac{3,600}{\text { headway }(\mathrm{s} / \mathrm{veh})}$
$\mathrm{q}=(3600 \times 40) / 60=2400 \mathrm{veh} / \mathrm{hr}$
$\mathrm{K}=\mathrm{N} / \mathrm{L}=40 / 1=40$ veh $/ \mathrm{km}$
Find space-mean speed: $q=k V s=2400=40 \mathrm{Vs}$
$\mathrm{Vs}=60 \mathrm{~km} / \mathrm{hr}$
Compute space headway: $k=40=1 / \mathrm{Hs}$
$\mathrm{Hs}=0.025 \mathrm{~km}=25 \mathrm{~m}$
Compute time headway: $\mathrm{Hs}=\mathrm{Vs} \times \mathrm{Ht}=25=[(60 \times 1000) / 3600] \mathrm{Ht}$
$\mathrm{Ht}=1.5 \mathrm{~s}$
The time headway is 1.5 seconds.

