

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING

Analog Electronics: Bipolar Junction Transistors

Ismail Mohd Khairuddin , Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang

Bipolar Junction Transistor

BFF1303 ELECTRICAL/ELECTRONICS ENGINEERING

Faculty of Manufacturing

Universiti Malaysia Pahang Kampus Pekan, Pahang Darul Makmur Tel: +609-424 5800 Fax: +609-4245888

Contents:

- Outcomes
- Introduction
- **Transistor Construction**
- **Transistor Operation**
- **Common-Base Configuration**
- **Common-Emitter Configuration**
- **Common-Collector Configuration**

UMP OPEN COURSEWARE

- Limits Of Operation
- **Transistor Specification Sheet**

Outcomes

Understand the physical operation of bipolar transistor

Select the operating point of a bipolar transistor circuit

Compute performance of several important amplifier configurations. Select an amplifier configuration appropriate for a given application.

Introduction

Bardeen, Brattain and Shockley

Discovery of the transistor in 1947

BFF1303 Electrical/Electronic Engineering

There are two types of transistors:

- pnp
- npn

The terminals are labeled:

- 📮 E Emitter
- B Base
- C Collector

I Mohd-Khairuddin, Z Md-Yusof

Transistor Operation

I Mohd-Khairuddin, Z Md-Yusof

With the external sources, V_{EE} and V_{CC} , connected as shown:

The emitter-base junction is forward biased

The base-collector junction is reverse biased

Currents in a Transistor

Emitter current is the sum of the collector and base currents:

$$I_E = I_C + I_B$$

The collector current is comprised of two currents:

$$I_C = I_{C_{\text{majority}}} + I_{CO_{\text{minority}}}$$

BFF1303 Electrical/Electronic Engineering

The base is common to both input (emitter-base) and output (collector-base) of the transistor.

Common-Base Amplifier

UMP OPEN COURSEWARE

Input Characteristics

This curve shows the relationship between of input current (I_E) to input voltage (V_{BE}) for three output voltage (V_{CB}) levels.

BFF1303 Electrical/Electronic Engineering

9 I Mohd-Khairuddin, Z Md-Yusof

Common-Base Amplifier

Output Characteristics

This graph demonstrates the output current (I_C) to an output voltage (V_{CB}) for various levels of input current (I_E).

Operating Regions

- Active Operating range of the amplifier.
- Cutoff The amplifier is basically off. There is voltage, but little current.
- Saturation The amplifier is full on. There is current, but little voltage.

Approximations

Emitter and collector currents:

$$I_C \cong I_E$$

Base-emitter voltage:

$$V_{BE} = 0.7 \text{ V} \text{ (for Silicon)}$$

BFF1303 Electrical/Electronic Engineering

I Ratio of I_C to I_E :

Ideally: $\alpha = 1$

- In reality: a is between 0.9 and 0.998
- I Alpha (α) in the AC mode:

$$\alpha_{\rm ac} = \frac{\Delta I_C}{\Delta I_E}$$

- The emitter is common to both input (base-emitter) and output (collectoremitter).
- The input is on the base and the output is on the collector.

Common-Emitter Characteristics

Collector Characteristics

Base Characteristics

Common-Emitter Configuration

Ideal Currents

$$I_E = I_C + I_B \qquad \qquad I_C = \alpha I_E$$

Actual Currents

 $I_C = \alpha I_E + I_{CBO}$ where I_{CBO} = minority collector current

 I_{CBO} is usually so small that it can be ignored, except in high power transistors and in high temperature environments.

When $I_B = 0 \mu A$ the transistor is in cutoff, but there is some minority current flowing called I_{CEO} .

$$I_{CE0} = \frac{I_{CBO}}{1-\alpha} \Big|_{I_B} = 0 \ \mu A$$

Beta (β)

- β represents the amplification factor of a transistor. (β is sometimes referred to as h_{fe} , a term used in transistor modeling calculations)
- In DC mode:

$$\beta_{\rm dc} = \frac{I_C}{I_B}$$

In AC mode:

$$\beta_{\rm ac} = \frac{\Delta I_C}{\Delta I_B} \Big|_{V_{CE}} = \text{constant}$$

Determining β from a Graph

$$\beta_{AC} = \frac{(3.2 \text{ mA} - 2.2 \text{ mA})}{(30 \,\mu\text{A} - 20 \,\mu\text{A})}$$
$$= \frac{1 \,\text{mA}}{10 \,\mu\text{A}} \Big|_{V_{CE}} = 7.5$$
$$= 100$$

$$\beta_{\rm DC} = \frac{2.7 \text{ mA}}{25 \text{ }\mu\text{A}} \bigg|_{V_{CE}=7.5}$$

=108

Beta (β)

 \blacksquare Relationship between amplification factors β and α

$$\alpha = \frac{\beta}{\beta + 1} \qquad \qquad \beta = \frac{\alpha}{\alpha - 1}$$

Relationship Between Currents

$$I_C = \beta I_B \qquad \qquad I_E = (\beta + 1)I_B$$

The input is on the base and the output is on the emitter.

The input is on the base and the output is on the emitter.

The characteristics are similar to those of the common-emitter configuration, except the vertical axis is I_E .

Limits Of Operations

- V_{CE} is at maximum and I_C is at minimum ($I_{Cmax} = I_{CEO}$) in the cutoff region.
- \blacksquare I_C is at maximum and V_{CE} is at minimum ($V_{CE max} = V_{CEsat} =$ V_{CEO}) in the saturation region.
- The transistor operates in the active region between saturation and cutoff.

UMP OPEN COURSEWARE

22 I Mohd-Khairuddin , Z Md-Yusof

Power Dissipation

Common-base:

$$P_{C\max} = V_{CB}I_C$$

Common-emitter:

$$P_{C\max} = V_{CE}I_C$$

Common-collector:

$$P_{C\max} = V_{CE}I_E$$

Transistor Specification Sheet

MAXIMUM RATINGS

Rating	Symbol	2N4123	Unit
Collector-Emitter Voltage	VCED	30	Vdc
Collector-Base Voltage	V _{CBO}	-40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current - Continuous	le	200	mAde
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW°C
Operating and Storage Junction Temperature Range	T _p T _{ag}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit °C W	
Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient	Ride	83.3		
	R _{LUA}	200	°C W	

Transistor Specification Sheet

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (1) $(I_C = 1.0 \text{ mAdc}, I_E = 0)$	V(BRCED	30		Vde
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	V(BRICBO	40		Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \ \mu Adc, I_C = 0)$	V _{(BR)EBO}	5.0	5	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$	Icao	-	.50	nAde
Emitter Cutoff Current $(V_{BE} = 3.0 \text{ Vdc}, I_C = 0)$	IEBO	-	50	nAdc
ON CHARACTERISTICS				
DC Current Gain(1) ($I_C = 2.0 \text{ mAde}, V_{CE} = 1.0 \text{ Vde}$) ($I_C = 50 \text{ mAde}, V_{CE} = 1.0 \text{ Vde}$)	hes	50 25	150	12
Collector-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCL(sat)	-	0.3	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VNEGHO	-	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain – Bandwidth Product (J _C = 10 mAde, V _{CE} = 20 Vde, f = 100 MHz)	fr	250		MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 100 MHz)	Cobo	-	4.0	pF
Input Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 100 kHz)	Case		8.0	pF
Collector-Base Capacitance (IE = 0, V _{CB} = 5.0 V, f = 100 kHz)	C _{cb}	-	4.0	pF
Small-Signal Current Gain (I _C = 2.0 mAde, V _{CE} = 10 Vde, f = 1.0 kHz)	h _{fe}	50	200	
Current Gain – High Frequency (I _C = 10 mAdc, $V_{CE} = 20$ Vdc, f = 100 MHz) (I _C = 2.0 mAdc, $V_{CE} = 10$ V, f = 1.0 kHz)	hie	2.5 50	200	
Noise Figure (I _C = 100 µAdc, V _{CE} = 5.0 Vdc, R _S = 1.0 k ohm, f = 1.0 kHz)	NF	-	6.0	dB
the second se				11

(1) Pulse Test: Pulse Width = 300 µs. Duty Cycle = 2.0%

Transistor Specification Sheet

BFF1303 Electrical/Electronic Engineering

