

Introduction to Infrastructural Engineering

Construction Materials4

Author Name: DR. MD NURUL ISLAM Faculty: FTEK email: mdnurul@ump.edu.my

Strength

Concrete has relatively

- High compressive strength,
- Low tensile strength
- Fair to assume that a concrete sample's tensile strength is about 10%-15% of its compressive strength
- The ultimate strength of concrete is influenced by
 - water-cementitious ratio
 - -the design constituents
 - the mixing
 - -placement
 - -curing methods

Elasticity

- Function of the modulus of elasticity of the aggregates and the cement matrix and their relative proportions
- The American Concrete Institute allows the modulus of elasticity to be calculated using the following equation:

$$E_c = 33w_c^{1.5} \sqrt{f_c'}$$

where

 w_c = weight of concrete (pounds per cubic foot) and where

$$90\frac{\mathrm{lb}}{\mathrm{ft}^3} \le w_c \le 160\frac{\mathrm{lb}}{\mathrm{ft}^3}$$

 f_c = compressive strength of concrete at 28 days (psi)

Example

Determine the Modulus of Elasticity of Concrete by the ACI formula for a concrete cylinder that has a unit weight of 120pcf (1920kg/m³) and a compressive strength of 3000 psi (21MPa).

$$E_c = 33w_c^{1.5} \sqrt{f_c'}$$

$$=33 \times 120^{1.5} \sqrt{3000}$$

Cracking

- All concrete structures will crack to some extent.
- Cracks due to tensile stress induced by shrinkage or stresses occurring during setting or use

http://www.hughpearman.com/2007/illustrat ions/shibboleth01.jpg

struction materials 4 BY Dr. MD Nurul

Shrinkage cracking

- Occur when concrete members undergo restrained volumetric changes (shrinkage) as a result of either drying, autogenous shrinkage or thermal effects.
- The number and width of shrinkage cracks that develop are influenced by
 - -the amount of shrinkage that occurs
 - -the amount of restraint present
 - -the amount and spacing of reinforcement provided.

Tension cracking

- Most common in concrete beams where a transversely applied load will put one surface into compression and the opposite surface into tension due to induced bending.
- The size and length of cracks is dependent on
 - The magnitude of the bending moment
 - The design of the reinforcing in the beam at the point under consideration.

Types of concrete

- Regular concrete
- High-strength concrete
- Stamped concrete
- High-performance concrete>
- Self-consolidating concretes
- Vacuum concretes
- Shotcrete
- Pervious concrete
- Cellular concrete,
- Cork-cement composites

- Glass concrete
 - Asphalt concrete
 - Rapid strength concrete
 - Rubberized concrete
 - Polymer concrete
 - Geopolymer or green concrete
 - Limecrete
 - Refractory Cement
 - Concrete cloth
 - Innovative mixtures
- Roller-compacted concrete > Gypsum

Concrete testing

Compression testing of a concrete cylinder

http://www.antouncivil.com.au/vca/Images/testing.jpg

Same cylinder after failure

http://www.concrete-curb.com/wp-content/uploads/BreakageCylinder.jpg

General test methods

- Compaction Factor Test (Compacting Factor Test, Glanville)
- Compaction Test
- Free Orifice Test (Orimet Test)
- K-Slump Tester
- Free Flow Test Methods
- Slump Test
- Modified Slump Test
- Slump Rate Machine
- Kelly Ball Test
- Ring Penetration Test

- Cone Penetration Test
- Moving Sphere Viscometer
- Flow Trough Test
- Delivery-Chute Torque Meter
- Delivery-Chute Depth Meter
- Surface Settlement Test